2013 Heart Failure Guideline Data Supplements

(Section numbers correspond to the full-text guideline.)

Table of Contents

Data Supplement 1. HFpEF (Section 2.2)	
Data Supplement 2. NYHA and AHA/ACC Class (Section 3)	
Data Supplement 3. Prognosis – Mortality (Section 4.1)	5
Data Supplement 4. Health-Related Quality of Life and Functional Capacity (Section 4.4)	7
Data Supplement 5. Stress Testing (Initial and Serial Evaluation) of the HF Patient (Section 6.1.1)	
Data Supplement 6. Clinical Evaluation – History (Orthopnea) (Section 6.1.1)	
Data Supplement 7. Clinical Evaluation – Examination (Section 6.1.1)	
Data Supplement 8. Clinical Evaluation – Risk Scoring (Section 6.1.2)	16
Data Supplement 9. Imaging Echocardiography (Section 6.4)	
Data Supplement 10. Biopsy (Section 6.5.3)	
Data Supplement 11. Stage A: Prevention of HF (Section 7.1)	
Data Supplement 12. Stage B: Preventing the Syndrome of Clinical HF With Low EF (Section 7.2)	
Data Supplement 13. Stage C: Factors Associated With Outcomes, All Patients (Section 7.3)	
Data Supplement 14. Nonadherence (Section 7.3.1.1)	
Data Supplement 15. Treatment of Sleep Disorders (Section 7.3.1.4)	
Data Supplement 16. Cardiac Rehabilitation-Exercise (Section 7.3.1.6)	
Data Supplement 17. Diuretics Versus Ultrafiltration in Acute Decompensated HF (Section 7.3.2.1)	
Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)	76
Data Supplement 19. ARBs (Section 7.3.2.3)	
Data Supplement 20. Beta Blockers (Section 7.3.2.4)	
Data Supplement 21. Anticoagulation (Section 7.3.2.8.1)	
Data Supplement 22. Statin Therapy (Section 7.3.2.8.2)	
Data Supplement 23. Omega 3 Fatty Acids (Section 7.3.2.8.3)	
Data Supplement 24. Antiarrhythmic Agents to Avoid in HF (7.3.2.9.2)	
Data Supplement 25. Calcium Channel Blockers to Avoid in HF (Section 7.3.2.9.3)	
Data Supplement 26. NSAIDs Use in HF (Section 7.3.2.9.4)	
Data Supplement 27. Thiazolidinediones in HF (Section 7.3.2.9.5)	
Data Supplement 28. Device-Based Management (Section 7.3.4)	
Data Supplement 29. CRT (Section 7.3.4.2)	
Data Supplement 30. Therapies, Important Considerations (Section 7.4.2)	
Data Supplement 31. Sildenafil (Section Section 7.4.2) © American College of Cardiology Foundation and American Heart Association, Inc.	

Data Supplement 32. Inotropes (Section 7.4.4)	123
Data Supplement 33. Inotropic Agents in HF (Section 7.4.4)	135
Data Supplement 34. Mechanical Circulatory Support (Section 7.4.5)	136
Data Supplement 35. LVADs (Section 7.4.5)	138
Data Supplement 36. Transplantation (Section 7.4.6)	149
Data Supplement 37. Comorbidities in the Hospitalized Patient (Section 8.1)	159
Data Supplement 38. Worsening Renal Function, Mortality and Readmission in Acute HF (Section 8.5)	161
Data Supplement 39. Nesiritide (Section 8.7)	165
Data Supplement 40. Hospitalized Patients – Oral Medications (Section 8.8)	177
Data Supplement 41. Atrial Fibrillation (Section 9.1)	186
Data Supplement 42. HF Disease Management (Section 11.2)	187
Data Supplement 43. Telemonitoring (Section 11.2)	189
Data Supplement 44. Quality Metrics and Performance Measures (Section 12)	191
References	192

Data Supplement 1. HFpEF (Section 2.2) **Patient Population** Study Name, Aim of Study Study Type Study Endpoints **Statistical Analysis Study Limitations Findings/ Comments** Author, Year (Results) Size Inclusion Criteria Exclusion Criteria Masoudi JACC To assess factors 19,710 Medicare beneficiary; No documentation of Preserved LVSF Multivariable logistic Limited to Medicare Factors associated with Cross LVEF 2003:41:217associated with sectional hospitalized with population; limited to preserved LVSF, which regression to assess 223 preserved LVSF in factors associated with cohort study principal discharge hospitalized pts; missing included gender, advanced 12535812 (1) diagnosis of HF; acute LVEF in a portion of the age, HTN, AF; and absence pts with HF preserved LVSF care hospitalization; of coronary disease population hospitalized between 4/1998-3/1999 Owan NEJM Define temporal Retrospective 4.596 Consecutive pts admitted No documentation of Proportion of pts with Linear regression and Limited to Olmsted County. Overall, more than half the 2006:355:251-MN; limited to hospitalized trends in prevalence to Mayo Clinic hospitals; LVEF population had preserved cohort study preserved LVSF: survival analysis 259 of HF with preserved Discharge code for HF: pts; missing LVEF in a LVSF; this proportion survival 16855265 (2) LVEF over 15 v 1987-2001 portion of the population increased overtime; survival in pts with HFpEF was only period slightly better than for those with HFrEF (HR:0.96) Bhatia NEJM 2.802 Pts admitted to 103 31% had HFpEF: HFpEF Evaluate the Retrospective No documentation of Death within 1 v: Multivariable survival Limited to Ontario: limited 2006:355:260-LVEF epidemiological cohort study Ontario hospitals: readmission for HF analysis to hospitalized pts: missing more often female. older. with LVEF in a portion of the 269 features and 4/1999-3/2001: AF. and HTN: Unadjusted 1685<u>5266 (</u>3) discharge diagnosis of outcomes of pts with population mortality similar (22% for HFpEF vs. HFrEF HF HFpEF vs. 26% for HFrEF); adjusted mortality also similar (aHR:1.13); readmission rates also similar between groups. 534 N/A Lee Circulation Retrospective Framingham Factors associated Multivariable logistic Limited to Framingham Assess the Factors associated with 2009:119:3070contribution of risk cohort study participants; incident HF with HFpEF; Mortality regression (risk cohort; relatively small HFpEF included female factors and disease factors); multivariable gender; elevated SBP; AF; 3077 sample size 19506115 (4) survival analysis and absence of CAD. Longpathogenesis to HFpEF (mortality) term prognosis equally poor (overall cohort median survival of 2.1 y; 5-y mortality 74%).

Kane JAMA	Measure changes in	Retrospective	2042	Random sample from	N/A	Diastolic function	Multivariable survival	Limited to Olmsted County,	In 4 y between baseline and
2011;306:856-	diastolic function and	cohort study		Olmsted County MN in		grade; incident HF	analysis	MN; limited to those	follow-up, prevalence of
863	assess the			1997; age ≥45;		-		following up for 2 nd	diastolic dysfunction
<u>21862747 (</u> 5)	relationship between			participating in baseline				examination	increased from 23.8% to
	diastolic			and follow up					39.2%. Diastolic dysfunction
	abnormalities and HF			assessments					associated with incident HF
	risk								(HR:1.81)

AF indicates atrial fibrillation; CAD, coronary artery disease; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HTN, hypertension; LVEF, left ventricular ejection fraction; LVSF, left ventricular systolic function; MN, Minnesota; N/A, not applicable; pts, patients, and SBP, systolic blood pressure.

Data Supplement 2. NYHA and AHA/ACC Class (Section 3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Pop	oulation	Endpoints		Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Madsen BK, 1994 <u>8013501 (</u> 6)	Predict CHF mortality	Longitudinal registry	190	N/A	Must be ambulatory	Death	N/A	Kaplan-Meier Mortality increased with increased NYHA class and with decreased EF	N/A	Conducted primarily outside U.S.
Holland R, 2010 20142027 (7)	Predict CHF mortality using self-assessed NYHA class	Longitudinal registry	293	Adults with CHF after CHF admission	N/A	Readmission over 6 mo	MLHF questionnaire and death	Survival analysis Readmission rate increased with higher NYHA class	No clinician assessment to compare to pt assessment	Conducted primarily outside U.S.
Anmar KA, 2007 <u>17353436 (</u> 8)	Measure association of HF stages with mortality	Cross- sectional cohort	2,029	Residents of Olmsted Co, MN	N/A	5-y survival rates	BNP	Survival analysis HF stages associated with progressively worsening 5-y survival rates	Retrospective classification of stage	N/A
Goldman L, 1981 <u>7296795 (</u> 9)	Reproducibility for assessing CV functional class	Longitudinal registry	75	All those referred for treadmill testing	N/A	Reproducibility testing	N/A	NYHA classification	N/A	Reproducibility only 56%

BNP indicates B-type natriuretic peptide; CHF, congestive heart failure; CV, cardiovascular; EF, ejection fraction; HF, heart failure; MLHF, Minnesota Living with Heart Failure; N/A, not applicable; NYHA, New York Heart Association; and pt, patient.

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient I	Population	Endpoints		Statistical Analysis (Results)	P Values & 95% CI:	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint				
The Seattle HF Model: Prediction of Survival in HF Levy, Wayne Circ 2006 <u>16534009</u> (10)	Develop and validate a risk model for 1,2,and 3-y mortality	Cohort	Derivation: 1,125 Validation: 9,942	Derivation Cohort: EF <30%, NYHA class III-IV Validation Cohort: EF <40%, NYHA class II-IV Both derivation and validation cohorts primarily out-pts (both clinical trial populations)	N/A	Prediction of 1,2,3-y mortality	N/A	Predicted vs. actual survival for 1, 2, and 3 y: 88.2% vs 87.8%, 79.2% vs 77.6%, 71.8% vs. 68.0%	ROC: 0.729; 95% Cl: 0.714- 0.744	Population not representative of HF population in general: clinical trial populations, restricted to HF with LVSD. Estimation of risk score is complex and requires computer/calculator.	24 variables included in risk score
Predicting Mortality Among Pts Hospitalized with HF (EFFECT) Lee, Douglas JAMA 2003 <u>14625335</u> (11)	Develop and validate a risk model for 30-d and 1-y mortality	Cohort	Derivation: 2,624 Validation: 1,407	No EF requirement; Community-based pts hospitalized with HF in Canada (met modified Framingham HF criteria)	Pts who developed HF after admit, transferred from different facility, over 105 y, nonresidents	30-d and 1-y mortality	N/A	Derivation Cohort: in-hospital mortality: 8.9%, 30-d mortality: 10.7%; 1-y mortality: 32.9% Validation cohort: in-hospital mortality: 8.2%, 30-d mortality: 10.4%; 1-y mortality:30.5%	ROC: 0.79 for 30-d mortality; ROC; 0.76 for 1-y mortality	N/A	Variables in Model: age, SBP, resp rate, Na <136, Hbg <10, BUN, CVD, COPD, dementia, cirrhosis, cancer
Predictors of Mortality After Discharge in pts Hospitalized w/ HF (OPTIMIZE- HF) O'Connor, Christopher AHJ 2008 <u>18926148 (</u> 12)	Develop models predictive of 60 and 90 d mortality	Cohort study/registry	4,402	No EF criteria (49% with LVSD), pts hospitalized with HF at institutions participating in OPIMIZE- HF performance- improvement program	N/A	Death at 60- 90 d	Hospitalization; death or rehospitalization	60-90 d mortality: 8.6%; death or rehospitalization: 36.2%	c index: 0.735; bias- corrected c index: 0.723	Validity - assessed by bootstraping	Developed a nomogram. Variables included in score: Age, weight, SBP, sodium, Cr, liver disease, depression, RAD

Data Supplement 3. Prognosis - Mortality (Section 4.1)

Predictors of Mortality and Morbidity in Pts with Chronic HF Pocock, Stuart EHJ 2006 <u>16219658</u> (13)	Develop prognostic models for 2-y mortality	Cohorts: used pts in the CHARM program	7,599	No EF criteria; out-pts; symptomatic HF	K >5.5; Cr >265 umol/L; MI or stroke in prior 4 wk; noncardiac disease limiting survival	Mortality	CV death or hospitalization	N/A	ROC:0.75, bias corrected: 0.74; ROC: 0.73 in low EF and in preserved EF cohorts	Population studied not representative of HF in general (pts enrolled in CHARM); validity - assessed by bootstrapping; laboratory data not available.	23 variables included in model
Risk Stratification for Inhospital Mortality in Acutely Decompensated HF: Classification and Regression Tree Analysis Fonarow, Gregg JAMA 2005 <u>15687312 (14)</u>	Estimate mortality risk in pts hospitalized with HF	Cohort/registry	Derivation:33,046 Validation: 32,229	Pts admitted with HF to hospital participating in the ADHERE registry; no EF criteria;	None	In-hospital mortality	N/A	Classification and regression tree analysis; In-hospital mortality: 4.1%; 95% CI:2.1%- 21.9%	N/A	N/A	Classifies pts into 5 risk categories. Discriminating nodes: BUN; SBP; Cr
A validated risk score of in- hospital mortality in pts with HF from the AHA GWTG Program Peterson, Pamela CircCQO 2010 20123668 (15)	Develop a risk score for inhospital mortality	Cohort/registry	Derivation:27,850; Validation:11,933	Pts admitted with HF to hospitals participating in the GWTG-HF program	Transfers, missing LVEF data	Inhospital mortality		Inhospital mortality 2.86%; C index 0.75	N/A	Validation cohort from same population. GWTG is a voluntary registry	Variables included in risk score: SBP, BUN, Sodium, age, heart rate, race, COPD
Predictors of inhospital mortality in pts hospitalized for HF. Insights from OPTIMIZE-HF Abraham, William JACC 2008 <u>18652942</u> (16)	Develop a clinical predictive model of in- hospital mortality	Cohort/registry	40,201	Pts admitted to hospital participating in OPTIMIZE- HF (registry/performance improvement program); no EF criteria (LVSD in 49% of those with measured EF); included those admitted with different diagnosis than the discharge diagnosis of HF	N/A	Inhospital mortality		Inhospital mortality: 3.8%; C index 0.77	N/A	Validity - assessed by bootstrapping	Risk prediction nomogram: age, HR, SBP, sodium, Cr, primary cause for admit, LVSD
Predictors of fatal and non-fatal outcomes in the CORONA:	Develop prognostic models in elderly pts and	Cohort	3,342	Pts enrolled in the CORONA study. Pts ≥60 y; NYHA class II-IV HF; investigator reported	Recent CV event or procedure/operation, acute or chronic liver disease or ALT >2x ULN; BUN >2.5 mg/dL;	Composite: CV mortality, nonfatal MI or nonfatal	All-cause mortality; CV mortality; fatal or nonfatal MI;	Total mortality: C index of 0.719; death due to HF: C index of 0.80;	N/A	Used a clinical trial population; limited to ischemic etiology	Elderly pts on contemporary HF therapy; NT- proBNP added

incremental value of apolipoprotein A-1, high- sensitivity C- reactive peptide and NT proBNP Wedel, Hans EJHF 2009 19168876 (17)	evaluate the relative prognostic significance of new biomarkers			ischemic etiology; EF ≤40% (or 35% if NYHA II)	chronic muscle disease or unexplained CK >2.5x ULNI; TSH >2x ULN; any condition substantially reducing life expectancy	stroke (time to event)	death from any cause or hospitalization for HF	all-cause mortality or HF hospitalization: C index of 0.701 (all models included NT-proBNP)			predictive information
Comparison of Four Clinical Prediction Rules for Estimating Risk in HF Auble, Thomas E Annals of Emergency Medicine 2007 <u>17449141</u> (18)	Examine the performance of 4 clinical prediction rules (ADHERE decision tree, ADHERE regression model, EFFECT, Brigham and Women's Hospital rule) for inpatient death, 30-d death, and inhospital death or serious complications	Cohort	33,533	Pts with primary ICD-9 discharge diagnosis of HF admitted at one of 2 Pennsylvania hospitals from the ED	N/A	Inhospital mortality; in- hospital mortality or serious complication; 30-d mortality	N/A	Inhospital mortality: 4.5%; Inhospital mortality or serious medical complication: 11.2%; 30-d mortality: 7.9% ADHERE rules could not be used in 4.1% because BUN or SCr were N/A.	N/A	N/A	Variability among rules in the number of pts assigned to risk groups and the observed mortality within risk group. EFFECT identified pts at the lowest risk, ADHERE tree identified largest proportion of pts in the lowest risk group

ADHERE indicates Acute Decompensated Heart Failure National Registry; AHA, American Heart Association; BUN, blod urea nitrogen; CHARM, Candesartan in Heart Failure: Assessment of Reduction in Mortality and morbidity; COPD, chronic obstructive pulmonary disease; CORONA, Controlled Rosuvastatin Multinational Trial in HF; CV, cardiovascular; CVD, cardiovascular disease; ED, emergency department; EF, ejection fraction; EFFECT, Enhanced Feedback for Effective Cardiac Treatment; GWTG, Get With the Guidelines; HF, heart failure; Hgb, hemoglobin; HR, heart rate; ICD-9, international classification of diseases; LVSD, left ventricular systolic dysfunction; MI, myocardial infarction; NA, sodium, N/A, not applicable; NT-proBNP; n-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; OPIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure; pts, patients; RAD, reactive airway disease; ROC, receiver operating characteristic curve; SBP, systolic blood pressure; SCr, serum creatinine; TSH, thyroid stimulating hormone; ULN, upper limit of normal.

Data Supplement 4. Health-Related Quality of Life and Functional Capacity (Section 4.4)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Po	opulation	Endp	oints	Statistical Analysis (Results)	Study Limitations	Findings/Comments
				Inclusion	Exclusion	Primary	Secondary			

				Criteria	Criteria	Endpoint	Endpoint			
Improvement in HRQoL after hospitalization predicts event- free survival in pts with advanced HF. Moser et al 2009 <u>19879462</u> (19)	To determine the frequency, durability, and prognostic significance of improved HRQoL after hospitalization for decompensated HF.	Secondary analysis of data from the ESCAPE trial	425	Hospitalized for NYHA class IV, at least 1 sign of fluid overload EF <30% history of prior HF hospitalization or chronic high maintenance diuretic doses survived to discharge from index admission	Significant comorbid condition that could shorten life (e.g. cancer), pulmonary artery catheter, mechanical circulatory or ventilatory support, IV milrinone within 48 h, dobutamine/ dopamine within 24 h, listed for CTX	HRQoL measured with the MLHFQ	Event-free survival	At baseline HRQoL was severely impaired but improved on average at 1 mo (74.2 \pm 17.4 vs 56.7 \pm 22.7) and improved most at 6 mo. HRQOL worsened in 51 (16.3%) pts and remained the same in 49 (15.7%). OR: 3.3; p<.009 The only characteristic that distinguished among these groups was whether or not the pt was too ill to perform the 6-min walk. There was a group by time interaction; the degree of improvement across time differed between pts who survived without an event and those who died or were rehospitalized by 6 mo. Pts with events between 1 and 6 mo did not experience as much improvement in HRQoL. A decrease in MLHFQ of >5 points predicted better event-free survival. (p<.0001 group time interaction)	Potential for survivor bias. Self-reported HRQoL. Relatively short follow-up period of 6 mo.	In pts hospitalized with severe HF decompensation, HRQoL is seriously impaired but improves substantially within 1 mo for most pts and remains improved for 6 mo. Pts for whom HRQoL does not improve by 1 mo after hospital admission merit specific attention both to improve HRQoL and to address high risk for poor event-free survival
QoL and depressive symptoms in the elderly: a comparison between pts with HF and age and gender matched community controls. Lesman- Leegte et al, 2009. <u>19181289</u> (20)	To examine whether there are differences in QoL and depressive symptoms between HF pts and an age and gender matched group of community- dwelling elderly and determine how chronic comorbid conditions qualify the answer	Secondary analysis of COACH trial data plus enrollment of a community sample from Netherlands	781	NYHA II-IV, ≥18 y, structural heart disease. Community sample randomly selected from population ≥55 y and not living at same address. 45% response rate.	Enrollment in a study requiring additional research visits or invasive intervention within last 6 mo or next 3 mo, terminal disease, active psychiatric diagnosis.	QoL measured with Medical Outcome Study 36-item General Health Survey and Cantril Ladder of Life. Depressive symptoms with CES-D.	Chronic conditions abstracted from chart of pts, self- reported by community sample.	QoL significantly impaired in HF pts compared to matched elderly. Largest differences were in physical functioning and vitality. Role limitations due to physical functioning very low in HF pts. QoL was lower in HF pts with COPD or diabetes. Depressive symptoms higher in HF pts (39% vs 21%) all p<0.001.	Manner in which comorbid conditions were assessed differed between HF pts and controls. List used was not all inclusive.	HF has a large impact on QoL and depressive symptoms, especially in women with HF. Differences persist, even in the absence of common comorbidities. Results demonstrate the need for studies of representative HF pts with direct comparisons to age- and gender-matched controls.

Ethnic Differences in QoL in Persons With HF. Riegel et al 2008 <u>18226772</u> (21)	To compare HRQoL in non- Hispanic white, black, and Hispanic adults with HF	Longitudinal comparative study with propensity scoring	1,212	Established diagnosis of chronic HF	Recent MI, USA, cognitive impairment, severe psychiatric problems, homeless, or discharged to an extended care or skilled nursing facility	HRQoL measured with the MLHFQ	N/A	HRQoL improved over time (baseline to 3- and 6-mo) in all groups but most dramatically among Hispanics. Hispanics improved more than whites (p<0.0001). Hispanics improved more than blacks (p=0.004).	Secondary analysis of existing data. Hispanic sample was primarily Mexican so results cannot be generalized to all Hispanics. Samples received different treatments at various sites; treatment was controlled in the analysis. Other factors that could explain these differences were not measured. Cultural bias in the data obtained from the MLHFQ is possible.	Cultural differences in the interpretation of and response to chronic illness may explain why HRQoL improves more over time in Hispanic pts with HF compared with white and black pts.
The impact of chronic HF on HRQoL data acquired in the baseline phase of the CARE-HF study. Calvert, Melanie. 2005 <u>15701474</u> (22)	To assess the QoL of pts with HF, due to LV dysfunction, taking optimal medical therapy using baseline QoL assessments from the CARE- HF trial, and to evaluate the appropriateness of using the EQ- 5D in pts with HF.	RCT	813	NYHA II-IV HF	None specified	QoL Euroquol EQ-5D and MLHFQ	N/A	There is a relationship between the EQ-5D score and gender, on average females enrolled had a worse QoL than male participants. r=-0.08; 95% CI: -0.13 to -04; p=0.00004 Mean EQ-5D score for NYHA III pts was higher than for NYHA IV pts (mean difference 0.17) p<0.0001; 95% CI: 0.08-0.25 Association between MLWHF and EQ-5D scores (increasing MLWFH associated with a decrease in EQ-5D) r=-0.00795; 95% CI: (-0.00885 to -0.00706); p<0.0001 HF is shown to have an important impact on all aspects of QoL but particularly on pts mobility and usual activities and leads to significant reductions in comparison with a representative sample of the UK population.	Pts assessed in the study are not a random sample of pts with severe HF. CARE-HF is an int'l study but used available normative data from a representative sample of the UK population to evaluate burden of disease. A study comparing UK and Spanish time trade-off values for EQ-5D health states demonstrated that although the general pattern of value assignation was similar, there were differences in values assigned to a number of health states	The impact of HF varies amongst pts but the overall burden of disease appears to be comparable to other chronic conditions such as motor neurone or Parkinson's disease. The EQ-5D appears to be an acceptable valid measure for use in pts with HF although further evidence of the responsiveness of this measure in such pts is required.

Characterization of HRQoL in HF pts with preserved vs low EF in CHARM, Lewis et al, 2007 <u>17188020 (</u> 23)	To characterize HRQoL in a large population of HF pts with preserved and low LVEF and to determine the factors associated with worse HRQoL.	Secondary analysis of data from the CHARM trial	2,709	"CHARM- Alternative" pts: LVEF ≤40% and not receiving an ACE-I; "CHARM- Added" pts: LVEF ≤40% and taking ACE-Is. Pts in NYHA class II required admission to hospital with a CV problem in prior 6 mo (which increased proportion of NYHA class III/IV in CHARM-Added. "CHARM- Preserved" pts had LVEF >40% with or without ACEI	N/A	QoL	N/A	9 independent clinical determinants of worse HRQoL: younger age, higher BMI, lower SBP, female sex, worse NYHA class, angina, PND, rest dyspnea, lack of ACE-I. Characteristics did not differ by group. LVEF was NS.	Population was healthy enough to enroll so may have fewer comorbidities. Asymptomatic pts were excluded. Only enrolled in Canada and US. Groups without ACE-I therapy may have affected HRQoL. No gold standard for measuring HRQoL.	Independent factors associated with worse HRQoL in both populations included female sex, younger age, higher BMI, lower SBP, greater symptom burden, and worse functional status.
The enigma of QoL in pts with HF. Dobre D, 2008 <u>17400313 (</u> 24)	To review RCTs that assessed the impact of pharmacologic treatments on QoL	Brief communicatio n	N/A	Clinical trials	N/A	QoL	Survival	N/A	N/A	Life prolonging therapies, such as ACE-Is and ARBs improve modestly or only delay the progressive worsening of QoL in HF. Beta blockers do not affect QoL in any way. Therapies that improve QoL (e.g., inotropic agents) do not seem beneficial in relation to survival.

QoL in individuals	To evaluate	Prospective	192	Admitted to	Cognitively	HRQoL	The no. of all-	The overall MLHFQ score was better	Conducted the trial in a	Transitional Care has an
with HF. Harrison.	whether the use	randomized		hospital with a	impaired (score >8	(MLWHF),	cause ED	among the Transitional Care pts than the	naturalistic manner in the	important role to play in
Margaret. 2002	of usual providers	trial		diagnosis of CHF	on Short Portable	symptom	visits, hospital	usual care pts:	usual setting of care with	altering the course of pts
12021683 (25)	and a			Residing in the	Mental Status	distress and	readmissions,	At 6 wk after hospital discharge (p=0.002)	usual providers.	hospitalized with HF. Our
,	reorganization of			regional home	Exam)	function at 6-	and QoL	At 12 wk after hospital discharge	Possibility of contamination	results suggest that with
	discharge			care radius.		and 12-wk	measured with	(p<0.001)	with the hospital nurses	modest adjustments to
	planning and			Expected to be		postdischarge	a generic	The MLHFQ's Physical Dimension	providing usual care.	usual discharge and
	transition care			discharged with			measure,	subscale score was better among the	Pts may have inadvertently	transition from hospital-to-
	with improved			home nursing care			Medical	Transitional Care pts than the usual care	alerted the research	home, pts with CHF can
	intersector			English or French			Outcome Study	pts:	coordinators of their	experience improved QoL,
	linkages			speaking			Short Form	At 6 wk after hospital discharge (p=0.01)	assignment to usual care or	and decreased use of ED,
	between nurses,			Admitted for more				At 12 wk after hospital discharge	transitional care.	for 3 mo after
	could improve			than 24 h to the				(p<0.001)	With multiple interventions	hospitalization. This
	QoL and health			nursing units				The MLHFQ's Emotional Dimension	it's not easy to assess	approach will provide the
	services							subscale score was better among the	neither the relative	needed adjunct to current
	utilization for							Transitional Care pts than the usual care	contribution of each	management of HF.
	individuals							pts at 6 wk after hospital discharge	component nor the	
	admitted							(p=0.006)	synergistic effect of the sum	
	to hospital with							46% of the Usual Care group visited the	of the parts.	
	HF.							ED compared with 29% in the Transitional		
								Care group (p=0.03)		
								At 12 wk postdischarge, 31% of the Usual		
								Care pts had been readmitted compared		
								with 23% of the Transitional Care pts		
								(p=0.26).		

ACEI; angiotensin-converting-enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; CARE-HF Cardiac Resynchronisation in Heart Failure; CES-D, Center for Epidemiological Studies-Depression scale; CHARM, Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity; CHF, congestive heart failure; COACH, Comparative study on guideline adherence and patient compliance in heart failure patients; CTX, chest x-ray; CV, cardiovascular; ED, emergency department; EF, ejection fraction; ESCAPE, Evaluation Study of Congestive Heart Failure and PulmonaryArtery Catheterization Effectiveness; HF, heart failure; HRQoL, health-related quality of life; MI, myocardial infarction; MLHFQ score, Minnesota Living With Heart Failure; N/A, not applicable; NYHA, New York Heart Association; pts, patients; PND, Paroxysmal nocturnal dyspnea; QoL, quality of life; RCT, randomized control trial; and SBP, systolic blood pressure.

Data Supplement 5. Stress Testing (Initial and Serial Evaluation) of the HF Patient (Section 6.1.1)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient Po	pulation	Seve	erity	End	lpoints	Mort	ality	Trial Duration	Statistical Analysis (Results)	Study Limitations
		.) ~	Pre-trial standard treatment	N (Total) n (Experimental) n (Control)	Ischemic/ Non- Ischemic	Inclusion	Exclusio n Criteria	Severity of HF Sympto ms	Study Entry Sverity Criteria	Primary	Secondary Endpoint	Annualize d Mortality	1st Year Mortality			

Defining the Optimal Prognostic Window for CPX in Pts with HF. Arena et al. Circ Heart Fail 2010; 3: 405-411 20200329 (26)	Assess the change in prognostic characteristic s of CPX at different time intervals	Cohort	1 year	791	51% ischemic	HF and LV dysfunction		NYHA 2.4 +/- 0.67	N/A	Major cardiac events - mortality, LV device implantatio n, urgent heart transplant	Cardiac mortality	N/A	75 deaths (of 791)	36 mo FU	For 24 mo post CPX (high vs. low Ve/VCO2): cardiac events p<0.001 (95% CI: 2.1 - 5.5); cardiac mortality p<0.001 (95% CI: 2.2 - 5.8) HR:dichotomou s3.4; 3.5	Observation al
Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory pts with HF. Mancini et al. Circulation 1991;83;778- 786 1999029 (27)	To determine if maximal exercise testing and measurement of PKVO2 identifies pts in whom heart transplant can be safely deferred	Observati onal prospectiv e cohort	Focus on hemodynami c and NYHA class	122 52 (PKVO2>14) 35 (PKVO2=<14)	46% ischemic	Ambulatory pts referred for heart transplant	Unable to perform exercise testing due to angina	70% NYHA III	N/A	Survival	N/A	N/A	94% survival in those with high PKVO2 vs. 70% for those with low PKVO2	2 y FU	p<0.005	Wide complex tachycardia in 1 pt
Peak Oxygen Consumption as a Predictor of Death in Pts With HF Receiving Beta Blockers. O'Neill JO et al. Circulation 2005;111;2313- 2318 15867168 (28)	To determine whether PKVO2 is a reliable indicator of prognosis in the beta blocker era	Observati onal prospectiv e cohort	Cutoff of 14 mL/kg1	2,105; n=909 on beta blocker; n=1,196 no beta blocker	52% ischemic	Referral for HF with LVEF<35%	Age <20, ESRD, prior OHT	N/A	N/A	Death	Death or transplantatio n	N/A	N/A	N/A	Pts on beta blockers: Death p<0.001, (95% Cl: 1.18– 1.36); death and transplant p<0.001, (95% Cl: 1.18– 1.32) aHR: 1.26; 1.25 per 1- mL/min/kg	N/A

CPX indicates cardiopulmonary exercise testing; EF, ejection fraction; ESRD, end-stage renal disease; FU, follow up; HF, heart failure; pts, patients; LVEF, left ventricular ejection fraction; N/A, not applicable; NYHA, New York Heart Association; OHT, orthotopic heart transplantation; PKVO2; peak oxygen consumption; and RCT, randomized control trial.

Data Supplement 6. Clinical Evaluation – History (Orthopnea) (Section 6.1.1)

Study Name, Author, Year	Study Type	Study Size	Patient Population	Utility in Detecting Elevated PCWP
Stevenson, LW; Perloff JAMA 1989:261:884-888 <u>2913385</u> (29)	Single center, prospective	50	Stage D	Orthopnea within preceding wk 91% of 43 pts with PCWP ≥22 0/7 pts with PCWP <22
Chakko et al; Am J Medicine 1991:90:353-9 <u>1825901</u> (30)	Single center, prospective	42	Stage D	For PCWP >20 Sensitivity 66%, Specificity 47%, PPV 61%, NPV 37%
Drazner et al Circ HF 2008:1:170-177 <u>19675681</u> (31)	Multicenter substudy of ESCAPE	194 (with PAC)	Stage D	Orthopnea (≥ 2 pillows) OR 2.1 (95% CI: 1.0-4.4); PPV 66%, NPV 51%; +LR 1.15, (-) LR 1.8; all for PCWP>22 OR 3.6 (95% CI: 1.02 -12.8) for PCWP>30

ESCAPE indicates Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; LR, likelihood ratio; NPV, negative predictive value; OR, odds ratio; PAC, pulmonary artery catheter; PCWP, Pulmonary Capillary Wedge Pressure; PPV, positive predictive value; and pts, patients.

Data Supplement 7. Clinical Evaluation - Examination (Section 6.1.1)

Study Name, Author, Year	Study Type	Study Size	Patient Population	Utility in Detecting Elevated PCWP
Jugular venous pres	ssure for assessing	g right atrial pre	essure	
Stevenson, LW; Perloff JAMA 1989:261:884-888 <u>2913385</u> (29)	Single center, prospective	50	Stage D	21/28 (75%) of pts with RAP ≥10 had elevated JVP
Butman et al JACC 1993:22:968-974 <u>8409071</u> (32)	Single center, prospective	52	Stage D	RAP associated with JVD and HJR -HJR,-JVD: RAP 4 (2) +HJR, -JVD: RAP 8 (5) +HJR, +JVD: RAP 13 (5)
Stein et al AJC 1997;80:1615-1618 <u>9416951</u> (33)	Single center	25	Class 3-4	RAP estimated from JVP vs. measured RA: r=0.92. Clinical estimates underestimate elevated JVP. Interaction between utility of estimated RAP and measured RAP (more of an underestimate as measured RAP increased). Bias 0.1 (RAP 0-8), 3.6 (RAP 9-14), 5 (RAP ≥15).
Drazner et al Circ HF 2008:1:170-177 <u>19675681</u> (31)	Multicenter substudy of ESCAPE	194 (with PAC)	Stage D	Estimated RAP for RAP >12 AUC 0.74

Jugular Venous Pre	ssure for Detecting	g Elevated PCV	VP	
Stevenson, LW; Perloff JAMA 1989:261:884-888 <u>2913385</u> (29)	Single center, prospective	50	Stage D	Elevated JVP associated with PCWP ≥22 58% sensitivity 100% specificity (0/7 with PCWP ≤18 mm Hg) However 8/18 pts with PCWP ≥35 mm Hg without elevated JVP
Chakko et al Am J Medicine 1991;90:353-359 <u>1825901</u> (30)	Single center, prospective	52	Stage D	"High JVP" for PCWP >20 mm Hg Sensitivity 70%, Specificity 79%, PPV 85%, NPV 62%
Butman et al JACC 1993:22:968-974 <u>8409071</u> (32)	Single center, prospective	52	Stage D	JVD at rest or with HJR for PCWP>18 mm Hg: Sens 81%, Spec 80%, PPV 91%, NPV 63%
Badgett et al JAMA 1997; 277:1712- 1719 <u>9169900</u> (34)	Literature review "Rational Clinical Examination" series	NA	Stage D citing above 3 studies	Suggested algorithm: If known low LVEF, and population with high prevalence of increased filling pressure, then elevated JVP is "very helpful" and associated with >90% chance of elevated filling pressures
Drazner et al Circ HF 2008:1:170-177 <u>19675681</u> (31)	Multicenter substudy of ESCAPE	194 (with PAC)	Stage D	JVP≥12 mm Hg for PCWP>22 Sensitivity: 65%, Specificity: 64%, PPV 75%, NPV 52%, +LR 1.79, (-)LR 1.8
Prognostic Utility of	f JVP			
Drazner et al NEJM 2001;345:574-81 <u>11529211</u> (35)	Retrospective analysis of SOLVD Treatment Trial	2569	Stage C	Multivariate analysis for elevated JVP Mean f/u 32 months Death RR 1.15 (95% CI: 0.95-1.38) HF hospitalization 1.32 (95% CI: 1.08-1.62) Death/HF hospitalization 1.30 (95% CI: 1.11-1.53)
Drazner et al Am J Med 2003;114:431-437 <u>12727575</u> (36)	Retrospective analysis of SOLVD Prevention Trial	4102	Stage B	Multivariate analysis for elevated JVD Mean follow-up 34 mo Development of HF RR 1.38 (95% CI: 1.1-1.7) Death or Development of HF RR 1.34 (95% CI: 1-1,1.6)

Drazner et al Circ HF	Multicenter substudy of	194 (with PAC)	Stage D	Multivariate analysis
2008:1:170-177 <u>19675681</u> (31)	ESCAPE			Enrollment estimated RAP associated with survival outside hospital at 6 mo (Referent RAP<13) RAP 13-16 HR 1.2 (95% CI: 0.96-1.5) RAP >16 HR 1.6 (95% CI: 1.2-2.1)
Meyer et al AJC 2009 103:839-844 19268742 (37)	Retrospective analysis of DIG trial	7788	Stage C	Mean follow-up 34 mo Univariate analysis Elevated JVP associated with Death: HR 1.7 (95% CI: 1.54-1.88) All-cause hosp: HR 1.35 (95% CI: 1.25-1.47) <u>After adjusting for propensity score</u> associations no longer significant; aHR: 0.95 (death), aHR:0.97 (hosp), p>0.5
Utility of Valsalva M	aneuver for Detect	ting Elevated P	CWP	
Schmidt et al AJC 1993;71:462-5 8430644 (38)	Prospective single center	38	Unknown (%HF not stated)	Utility of square wave for LVEDP ≥15 mm Hg: sens 100%, spec 91%, PPV 82%, NPV 100%
Rocca et al Chest 1999; 116:861-7 <u>10531144</u> (39)	Single center, prospective study	45	Stage C	Pulse amplitude ratio by Valsalva correlated with BNP (r=0.6, p<0.001)
Givertz et al AJC 2001 1213-1215 <u>11356404</u> (40)	Single center, prospective study of Vericor system	30 men	Class 3/4	Predicted PCWP by Valsalva vs measured PCWP: r=0.9, p<0.001. Mean difference 0.07 ±2.9 mm Hg Predicted PCWP had sensitivity: 91%, specificity: 100% for PCWP ≥18 mm Hg
Sharma et al Arch Intern Med 2002:162:2084- 2088 <u>12374516</u> (41)	Prospective study of commercial device (VeriCor) at 2 centers	57 pts (2 women)	Unknown Majority pts with CAD	Pulse amplitude ratio correlated with LVEDP (r=0.86) 84% of measurements within 4 mm Hg of LVEDP
Felker et al Am J Medicine 2006;119:117-132 <u>16443410</u> (42)	Review paper	N/A	N/A	Significant correlation between CV response to Valsalva and LV filling pressures

AUC indicates area under the concentration curve; BNP, B-Type Natriuretic Peptide; CAD, coronary artery disease; CV, cardiovascular; DIG, Digitalis Investigation Group; f/u, follow-up; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness HJR, hepatojugular reflux; LVEF, left ventricular ejection fraction; LVEDP, Left Ventricular End-Diastolic Pressure; JVD, jugular venous distension; JVP, jugular venous pressure; N/A, not applicable; NPV, negative predictive value; PCWP, Pulmonary Capillary Wedge Pressure; PPV, positive predictive value, Pts, patients; r, Pearson's correlation coefficient; RAP, right arterial pressure; and SOLVD, Studies of left ventricular dysfunction.

Data Supplement 8. Clinical Evaluation – Risk Scoring (Section 6.1.2)

Study Name, Author, Year	Study Type	Study Size	Patient population	Variables	Utility
Stage C					
Levy et al Circulation 2006;113:1424-1433 Seattle HF score <u>16534009</u> (10)	Derivation cohort (PRAISE 1); then tested in 5 additional trial databases	1125 (Derivation) 9942 (Validation)	Largely Stage C	Available on website	2 year survival for scores 0, 1,2,3,4 was: 93%, 89%, 78% 58%, 30%, 11% AUC 0.729 (0.71 to 0.74)
Pocock et al Eur Heart J 2006;27:65-75 CHARM <u>16219658</u> (13)	Analysis of CHARM	7,599	Stage C HF	21 variables	2 year mortality Lowest to highest deciles 2.5% to 44% C statistic 0.75
Stage D					
Aaronson et al Circulation 1997;95:2660-7 HF Survival Score <u>9193435</u> (2)	Derivation and Validation 2 transplant centers	268 (Derivation) 199 (Validation)	Stage D	Ischemic cardiomyopathy, resting heart rate, LVEF, IVCD (QRS duration 0.12 sec of any cause), mean resting BP, peak O2, and serum sodium PCWP (invasive)	3 strata Event-free survival rates at 1 y for the low-, medium-, and high-risk HFSS strata were 93±2%, 72±5%, and 43±7% AUC 1 y 0.76-0.79
Lucas et al Am Heart J 2000;140:840-7 "Congestion Score" <u>11099986</u> (43)	Retrospective, single center	146	Stage D	Congestion score: orthopnea, JVD, edema, weight gain, new increase diuretics	Post discharge (4-6 wk) score vs. 2 y death 0: 54% 1-2: 67% 3-5: 41%
Nohria et al JACC 2003:41:1797-1804 "Stevenson profiles" <u>12767667</u> (44)	Prospective, single center	452 pts	Stage D	Stevenson classification Profiles A,B,C,L	Profile B associated with death+urgent transplant in multivariate analysis (HR: 2.5, p=0.003).
Drazner et al Circ HF 2008;1:170-7 "Stevenson profiles" <u>19675681</u> (31)	Substudy of ESCAPE	388	Stage D	Stevenson classification	Discharge profile "wet or cold" HR 1.5 (1.1, 2.1) for number of d alive outside hosp at 6 mo in multivariate analysis
Levy et al J Heart Lung Tx	Retrospective analysis of REMATCH	129 REMATCH	Stage D	Seattle HF Score	The 1-y ROC was 0.71 (95% CI: 0.62-0.80).

2009:28: 231-236.					
Seattle HF Score					
<u>19285613</u> (45)					
Gorodeski et al	Single center study of	215 (between	Stage D	Seattle HF score	ACM, VAD, Urgent HT
Circ Heart Fail	ambulatory pts presented to	2004-2007)			2 y f/u
2010;3:706-714	transplant committee				C index 0.68 (1 yr), 0.65 (2 yr)
Seattle HF Score					Calibration overestimated survival among UNOS 2 pts
<u>20798278</u> (46)					
Hospitalized Patients					
Lee et al	Retrospective study of	2624	Hospitalized pts	Age, SBP, RR, Na<136, Hgb <10,	Predicted and observed mortality rates matched well
	multiple nospitals in Ontario			BUN, CVA, Dementia, COPD,	20 d montality
2003:290:2581-2587	Canada	1999-2001)		cirrnosis, Cancer	
<u>14625335</u> (11)		1407			AUC derivation 0.82
		(Validation 1997-1999)			Validation 0.79
		,			1 v mortality
					AUC
					Derivation 0.77
					Validation 0.76
Fonarow et al	CART analysis of ADHERE	33 046	Hospitalized pts	BUN ≥43 SBP<115 SCr ≥2 75	In-hospital mortality
JAMA	national registry 2001-2003	(derivation)			AUC 67-69%
2005:293:572-580		32.229			Morality ranges from 1.8(low risk) to ~25% (high risk)
ADHERE		(Validation)			
15687312 (14)		(
Rohde et al	Single center study 2000-	779	Hospitalized pts	Cancer, SBP ≤124, Cr >1,4m	In-hospital mortality
J Cardiac Failure	2004			BUN>37, Na <136, Age>70	Bootstrap C=0.77 (0.689-0.85)
2006;12:587-593					6 increasing groups: 0,5%, 7%, 10%, 29%, 83%
"HF Revised Score"					
<u>17045176</u> (47)					
Abraham et al	Analysis of OPTIMIZE-HF	48,612 pts	Hospitalized pts	19 variables	In-hospital mortality
JACC	registry	Validated in			C statistic 0.77
2008;52:347-356	2003-2004	ADHERE			Validation C statistic 0.746
OPTIMIZE-HF					Excellent reliability for mortality
<u>18652942</u> (16)					

Peterson et al Circ Cardiovasc Qual Outcomes 2010:3:25-32 GWTG <u>20123668</u> (15)	Analysis of GWTG admitted 2005-2007	27,850 (Derivation) 11,933 (Validation)	Hospitalized pts	Age, SBP, BUN, HR, Na, COPD, nonblack race	In-hospital mortality C index 0.75 Predicted probability mortality over deciles ranged from 0.4% - 9.7% and corresponded with true mortality
Other					
Gheorghiade et al Eur J of Heart Failure 2010:12:423-433 ESC Congestion Score <u>20354029</u> (48)	Scientific Statement from Acute HF Committee of HF Association of ESC	N/A	N/A	Congestion score Bedside assessment (Orthopnea, JVD, HM, Edema) Lab (BNP or NT proBNP) Orthostatic BP 6 min walk test Valsalva	Needs to be tested

ACM indicates all cause mortality; ADHERE, Acute Decompensated Heart Failure National Registry; AUC, area under the curve; BNP, B-type natriuretic peptide; BP, blood pressure; BUN, blood urea nitrogen; CART, Classification and regression trees; CHARM, Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity; COPD, chronic obstructive pulmonary disease; CVA, Cerebrovascular Accident; ESC, European Society of Cardiology; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; GWTG, Get With the Guidelines; HF, heart failure; HFSS, heart failure survival score; Hgb, hemoglobin; HR, heart rate; HT, heart transplantation; HM, hepatomegaly; IVCD, intraventricular conduction delay; JVD, jugular venous distension; LVEF, left ventricular ejection fraction; N/A, not applicable; Na, sodium; NT proBNP, n-terminal pro-B-type natriuretic peptide; OPTIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Pts with HF; PCWP, Pulmonary Capillary Wedge Pressure; PRAISE, Prospective Randomized Amlodipine Survival Evaluation; pts, patients; REMATCH, Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure; ROC, receiver operating characteristic curve; RR, respiratory rate; SBP, systolic blood pressure; SCr, serum creatinine; UNOS, United Network of Organ Sharing; and VAD, ventricular assist device.

Data Supplement 9. Imaging Echocardiography (Section 6.4)

Ctuchy	Aim of Study	Ctudy Type	Ctudy Cize	Dationt Dan	ulation	Endnainta	Statistical Analysis (Deculta)	Ctudu Limitationo
Sludy	Aim of Study	Sludy Type	Sludy Size	Patient Pop	Duration	Enapoints	Statistical Analysis (Results)	Study Limitations
Name,								
Author								
Aution,								
Year								
				Inclusion Criteria	Exclusion Criteria			
IS. Syed	Evaluate LGE-CMR	Observational	120 (35 with	Histologically proven	Prior MI, myocarditis,	LGE-CMR presentation	Of the 35 pts with histology, abnormal LGE was present in	No control group,
2010	in identifving CA:		positive cardiac	amvloidosis and, in the	prior peripheral blood	in pts with amvloidosis:	97% of the 49 with echo evidence, abnormal LGE was	cardiac histology was only
20159642	investigate		histology 49	case of AL amyloidosis	stem cell	associations between	present in 86% of the 36 without histology or ECHO evidence	present in a subset of pts
(19)	associations		without cardiac	confirmatory evidence of	transplantation or	LGE and clinical	of CA abnormal LGE was present in 17%	contraindication to the use of
(43)				committatory evidence of				
	between LGE and		histology but with	monocional protein in the	prior neart	morphologic, functional,	In all pts, LGE presence and pattern was associated with	Ga
	clinical, morphologic,		echo evidence of	serum or urine and/or a	transplantation	and biochemical	NYHA functional class, ECG voltage, LV mass index, RV wall	
	functional, and		CA, 36 without	monoclonal population of		features.	thickness, troponin-T, and BNP levels.	
	biochemical		histology or echo	plasma cells in the bone				
	features.		evidence of CA)	marrow.				

V Rizzello 2009 <u>19443475</u> (50)	Evaluate the prognosis of viable pts with and without improvement of LVEF after coronary revascularisation.	Observational	90; group 1: viable pts with LVEF improvement (n=27); group 2, viable pts without LVEF improvement (n=15), group 3, non-viable pts (n=48)	Pts were already scheduled for coronary revascularization according to clinical criteria of reduced LVEF (40%), symptoms of HF and/or angina, presence/absence of ischemia and presence of critical coronary disease at angiography. Only pts who had undergone coronary revascularisation alone were included in the study	Pts who had undergone mitral valvuloplasty or aneurismectomy in association with revascularisation were excluded.	Cardiac events were evaluated during a 4-y follow-up (cardiac death, new MI, admission to hospital for HF)	Cardiac event rate was low (4%) in group 1, intermediate (21%) in group 2 and high (33%) in group 3. After revascularization, the mean (SD) LVEF improved from 32 (9)% to 42 (10)% in group 1, but did not change significantly in group 2 and in group 3, p,0.001 by ANOVA. HF symptoms improved in both groups 1 (mean (SD) NYHA class from 3.1 (0.9) to 1.7 (0.7)) and 2 (from 3.2 (0.7)-1.7 (0.9)), but not in group 3 (from 2.8 (1.0)-2.7 (0.5)), p=0.001 by ANOVA. The difference in event rate was not statistically significant between groups 1 and 2 -small number of pts- but it was significant between the 3 groups using Kaplan–Meier p=0.01	N/A
Kevin C Allman 2002 <u>11923039</u> (51)	Examines late survival with revascularization vs medical therapy after myocardial viability testing in pts with severe CAD and LV dysfunction	Meta-analysis of observational studies	3,088 (viability demonstrated in 42%)	Pts with CAD and LV dysfunction who were tested for myocardial viability with cardiac imaging procedures from 24 viability studies reporting pt survival using thallium perfusion imaging, F-18 fluorodeoxyglucose metabolic imaging or dobutamine ECHO.	Those not reporting deaths or where deaths could not be apportioned to pts with vs without viability were excluded	Annual mortality rates, pts followed for 25±10 mo.	For pts with defined myocardial viability, annual mortality rate was 16% in medically treated pts but only 3.2% in revascularized pts (χ^2 =147, p<0.0001). This represents a 79.6% relative reduction in risk of death for revascularized pts. For pts without viability, annual mortality was not significantly different by treatment method: 7.7% with revascularization vs 6.2% for medical therapy (p=NS).	The individual studies are observational, nonrandomized, unblinded and subject to publication and other biases. In this metaanalysis, viability could only be interpreted as "present" or "absent" based on individual studies' definitions
Beanlands RS. 2002 <u>12446055</u> (52)	Whether the extent of viability or scar is important in the amount of recovery of LV function and to develop a model for predicting recovery after revascularization that could be tested in a randomized trial.	Prospective multicenter cohort	82; Complete follow-up was available on 70 pts.	Pts CAD and severe LV dysfunction with EF 35% by any quantitative technique, who were being scheduled for revascularization	PTs with MI within the preceding 6 wk, severe valve disease requiring valve replacement, requirement for aneurysm resection, and inability to obtain informed consent.	Absolute change in EF determined by radionuclide angiograms 3 mo postrevascularization	Amount of scar was a significant independent predictor of LV function recovery after revascularization. Across tertiles of scar scores (I, small: 0% to 16%; II, moderate: 16% to 27.5%; III, large: 27.5% to 47%), the changes in EFs were 9.0±1.9%, 3.7±1.6%, and 1.3±1.5% (p=0.003: I vs. III), respectively.	Pt population in this study included pts who were predominantly men, predominately between 53- 71 y of age (1 SD from the mean), had multivessel disease, and had bypassable vessels. Although improvement in LV function has been noted at 3 mo of follow-up in many previous studies, recent data suggest that more recovery may be observed with longer follow-up time

Paul R. Pagley 1997 <u>9264484</u> (53)	Hypothesized that pts with poor ventricular function and predominantly viable myocardium have a better outcome after bypass surgery compared with those with less viability.	Retrospective cohort	70	Pts with EFs <40% without significant valvular disease who were referred for a first coronary bypass surgery and underwent preoperative quantitative planar 201TI imaging for viability determination.	Prior CABG, coexisting valvular disease and underwent concurrent aortic or MV replacement, or those with SPECT imaging	CV death or cardiac transplantation; median time to follow-up was 1177 d (range, 590 to 1826)	The viability index was significantly related to 3-y survival free of cardiac event (cardiac death or heart transplant) after bypass surgery (p=0.011) and was independent of age, EF, and number of diseased coronary vessels. Survival free of cardiac death or transplantation was significantly better in group 1 pts on Kaplan-Meier analysis (p=0.018).	N/A
Senior R, 1999 <u>10362184</u> (54)	To evaluate the effect of revascularization on survival in pts with CHF due to ischemic LV systolic dysfunction based on the presence of myocardial viability	Observational prospective	87	CHF (NYHA class II-IV) for at least 3 mo that was treated medically; LVEF ≤35%; clinical evidence of CAD	Significant valvular disease, unstable angina, MI within three months, sustained ventricular tachycardia or AF	Cardiac deaths were defined as those resulting from acute MI, refractory CHF or occurring suddenly and not being attributed to other known causes after a mean follow-up of 40 ± 17 mo	Pts with at least 5 segments showing myocardial viability underwent revascularization, mortality was reduced by an average of 93% which was associated with improvement in NYHA class as well as LVEF. Pts with <5 segments showing myocardial viability who underwent revascularization (and thus, showing mostly scar), and those with at least 5 segments demonstrating myocardial viability who were treated medically, had a much higher mortality. (95% CI: 22%-99%)	Single-center study where selection bias is unavoidable. Selection bias may have favored taking one group to surgery over another.
Kwon DH 2009 <u>19356530</u> (55)	To determine whether the extent of LV scar, measured with DHE-CMR predicts survival in pts with ischemic cardiomyopathy ICM and severely reduced LVEF.	Observational	349	Pts with documented ICM (on the basis of 70% stenosis in at least 1 epicardial coronary vessel on angiography and/or history of MI or coronary revascularization), who were referred for the assessment of myocardial viability with CMR	Pts with standard CMR contraindications including severe claustrophobia, AF, and the presence of pacemakers, defibrillators, or aneurysm clips	All-cause mortality was ascertained by social security death index after a mean of follow-up 2.6 ± 1.2 y (median 2.4 y)	Mean scar percentage and transmurality score were higher in pts with events vs those without (39±22 vs 30±20, p=0.003, and 9.7±5 vs. 7.8±5, p=0.004). *On Cox proportional hazard survival analysis, quantified scar was greater than the median (30% of total myocardium), and female gender predicted events (RR: 1.75; 95% CI: 1.02-3.03 and RR:1.83; 95% CI: 1.06- 3.16, respectively, both p=0.03).	Selection bias of an observational study conducted at a large tertiary referral center. Only the pts with no contraindications to CMR underwent the examination.
Ordovas KG. 2011 <u>22012903</u> (56)	N/A	Review paper	N/A	N/A	N/A	N/A	An international multicenter study (54) reported a sensitivity of 99% for detection of acute infarction and 94% for detection of chronic infarction. Delayed enhancement occurs in both acute and chronic (scar) infarctions and in an array of other myocardial processes that cause myocardial necrosis, infiltration, or fibrosis. These include myocarditis, hypertrophic cardiomyopathy, amyloidosis, sarcoidosis, and other myocardial conditions. In several of these diseases, the presence and extent of delayed enhancement has prognostic implications.	N/A

AF, atrial fibrillation; AL, Amyloid Light-chain; ANOVA, analysis of variance; CA, cardiac amyloidosis; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CMR, cardiovascular magnetic resonance; CV, cardiovascular; DHE-CMR, delayed hyperenhancement cardiac magnetic resonance; ECHO, echocardiography; EF, ejection fraction; Gd, gadolinium; ICM, ischemic cardiomyopathy; LGE-CMR, late gadolinium enhancement cardiac magnetic resonance; LV, left ventricular; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; pts, patients; RV, right ventricular; SD, standard deviation; and SPECT, single-photon emission computed tomography.

Data Supplement 10. Biopsy (Section 6.5.3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Population	Results
Cooper LT, Baughman KL, Feldman AM et al. The role of endomyocardial biopsy in the management of CV disease: Circulation 2007 November 6;116(19):2216-33. <u>17959655</u> (57)	Role of endomyocadial biopsy for management of CV disease	A scientific statement from the AHA, ACC, & ESC	N/A	N/A	N/A
Kasper EK, Agema WR, Hutchins GM, Deckers JW, Hare JM, Baughman KL. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive pts. <i>J Am Coll Cardiol</i> 1994 March 1;23(3):586-90. <u>8113538</u> (58)	To document causes of DCM in a large group of adult HF pts	Retrospective Cohort	673	DCM pts with symptoms within 6 mo, evaluated at Johns Hopkins Hospital 1982-1991	Most common causes of DCM: idiopathic (47%), myocarditis (12%) and CAD (11%), other causes (31%)
Fowles RE, Mason JW. Endomyocardial biopsy. Ann Intern Med 1982 December;97(6):885-94. <u>6756241 (</u> 59)	Complication risk with RV biopsies	Review	N/A	N/A	Complication rate of 1% in 4000 biopsies (performed in transplantation and CMP pts) 4 tamponade (0.14%), 3 pneumothorax, 3 AF, 1 ventricular arrhythmia, and 3 focal neurological complications
Deckers JW, Hare JM, Baughman KL. Complications of transvenous right ventricular endomyocardial biopsy in adult pts with cardiomyopathy: a seven-year survey of 546 consecutive diagnostic procedures in a tertiary referral center. <i>J Am Coll Cardiol</i> 1992 January;19(1):43-7. <u>1729344</u> (60)	To determine the incidence, nature and subsequent management of complications occurring during RV endomyocardial biopsy in pts with cardiomyopathy	Prospective Cohort	546	546 consecutive biopsies for DCM pts at single center,	 33 total complications (6%): 15 (2.7%) during catheter insertion: 12 arterial punctures (2%), 2 vasovagal reactions (0.4%) and 1 prolonged bleeding (0.2%), 18 (3.3%) during biopsy: 6 arrhythmias (1.1%), 5 conduction abnormalities (1%), 4 possible perforations (0.7%) and 3 definite perforations (0.5%). 2 (0.4%) of the 3 pts with a perforation died
Ardehali H, Qasim A, Cappola T et al. Endomyocardial biopsy plays a role in diagnosing pts with unexplained cardiomyopathy. Am Heart J 2004 May;147(5):919-23. <u>15131552</u> (61)	To evaluate the utility of RV biopsy in confirming or excluding a clinically suspected diagnosis	Retrospetive chart review	845	Pts with initially unexplained cardiomyopathy (1982- 1997) at The Johns Hopkins Hospital.	Clinical assessment of the etiology inaccurate in 31% EMBx helps establish the final diagnosis in most
Holzmann M, Nicko A, Ku [°] hl U, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach. A retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 2008;118:1722–8.	To determine complication rate of RV biopsy	Cohort	2415	1919 pts underwent 2505 endomyocardial biopsy retrospectively (1995- 2003), and 496 pts underwent 543	Major complications cardiac tamponade requiring pericardiocentesis or complete AV block requiring permanent pacing rare: 0.12% in the retrospective study and 0% in the prospective study. Minor complications such as pericardial effusion, conduction abnormalities, or arrhythmias in 0.20% in the retrospective study

<u>18838566 (</u> 62)				endomyocardial biopsy prospectively (2004- 2005) to evaluate unexplained LV dysfunction	and 5.5% in the prospective study
Elliott P, Arbustini E. The role of endomyocardial biopsy in the management of CV disease: a commentary on joint AHA/ACC/ESC guidelines. <i>Heart</i> 2009 May;95(9):759-760. <u>19221107</u> (63)	N/A	Commentary	N/A	N/A	Emphasizes genetic causes of CMP

ACC indicates American College of Cardiology; AHA, American Heart Association; AF, atrial fibrillation; AV, atrioventricular; CAD, coronary artery disease; CMP, cardiomyopathy; DCM, dilated cardiomyopathy; EMBx, endomyocardial biopsy; ESC, European Society of Cardiology; LV, left ventricular; N/A, not applicable; pts, patients; and RV, right ventricular.

Data Supplement 11. Stage A: Prevention of HF (Section 7.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient P	opulation	Endpoints	Trial Duration (Years)	Statistical Analysis (Results)	Study Limitations
			N (Total) n (Experimental) n (Control)	Inclusion Criteria	Exclusion Criteria				
Lloyd-Jones et al, The lifetime risk for developing HF; Circulation, 2002; 106:3068-3072 <u>12473553</u> (64)	Examine lifetime risk of developing CHF among those without incident or prevalent disease	Prospective cohort	8229	Free of CHF at baseline	N/A	N/A	N/A	Lifetime risk is 1 in 5 for men and women; significant association between MI and HTN in lifetime risk of CHF.	Subjects mostly white and results not generalizable to other races.
Vasan et al, Residual lifetime risk for developing HTN in middle-aged women and men; JAMA, 2002:287:1003-1010. <u>11866648</u> (65)	Quantify risk of HTN development	Prospective cohort	1298	Ages 55-65 y and free of HTN at baseline.	N/A	N/A	N/A	Residual lifetime risk for developing HTN was 90%. Risk did not differ by sex or age, lifetime risk for women vs men aged 55 y, HR: 0.91 (95% CI, 0.80-1.04); for those aged 65 y, HR:0.88 (95% CI, 0.76-1.04)	Measured HTN in middle age, when a large portion of people develop HTN at younger ages so actual risk may be different for younger people. Did not take into account other risks for HTN like obesity, family history of high BP, dietary sodium and potassium intake, and alcohol consumption
Levy et al, The progression from HTN to CHF; JAMA, 1996;275:1557-62 <u>8622246</u> (66)	Analysis of expected rates of HF associated with diagnosis of HTN	Prospective cohort	5,143	Free of CHF at baseline.	N/A	Developmen t of HF	20	Those with HTN at a higher risk for CHF: Men, HR: 2.04; 95% CI: 1.50- 2.78; Women, HR: 3.21; 95% CI: 2.20- 4.67	Subjects mostly white and results not generalizable to other races. Possible misclassification bias as some subjects diagnosed w/HTN before use of echocardiography.

								PAR for CHF in those with HTN: 39% for men and 59% in women.	
Wilhelmsen et al, HF in the general population of men: morbidity, risk factors, and prognosis; J Intern Med 2001;249:253-261 <u>11285045</u> (67)	Identification of risk associated with HTN	Population- based intervention trial	7,495	N/A	N/A	Developmen t of HF	27	CAD and HTN were the most common concomitant diseases in HF pts (79.1%).	N/A
Kostis, et al, Prevention of HF by antihypertensive drug treatment in older persons with isolated systolic HTN; JAMA 1997;278:212-216. <u>9218667</u> (68)	To assess the effect of antihypertensive care on the incidence of HF in older pts with systolic HTN	RCT	4,736; 2,365; 2,371	Age ≥60y, Isolated systolic HTN: SBP 160-219 mm Hg with DBP <90 mm Hg.	Recent MI, CABG, DM, alcohol abuse, demential stroke, AF, AV block, multiform premature ventricular contractions, bradycardia <50 beats/min; diuretic therapy.	Fatal and non-fatal HF	4.5	49% reduction RR: 0.51; 95% CI: 0.37-0.71; p<.001	Noteworthy that pts with prior MI had an 80% risk reduction.
Staessen, Wang and Thijs; CV prevention and BP reduction: a quantitative overview updated until 1 March 2003; J Hypertens 2003;21:1055-1076 <u>12777939</u> (69)	Assessment of various drugs and their reduction of HF	Meta analysis	120,574	N/A	N/A	CV events	N/A	CCB, resulted in better stroke protection than older drugs: including (-8%, p=0.07) or excluding verapamil (-10%, p=0.02), as well as ARB (-24%, p=0.0002). The opposite trend was observed for ACEI (+10%, Pp=0.03). The risk of HFwas higher (p< 0.0001) on CCB (+33%) and alpha blockers (+102%) than on conventional therapy involving diuretics	N/A
Sciaretta, et al; Antihypertensive treatment and development of HF in hypertension: a Bayesian network meta- analysis of studies in pts with HTN and high CV risk. Arch Intern Med. 2011 Mar 14;171(5):384-94. <u>21059964</u> (70)	Compare various drugs and risk for HF	Meta analysis	223,313	Studies had to be RCTs from 1997- 2009; pts with HTN or a population characterized as having a "high" CV risk profile and a predominance of pts with HTN (>65%); the sample size ≥200 pts; and information on the absolute incidence of HE and	N/A	HF	N/A	Diuretics vs. placebo: OR: 0.59; 95% Crl: 0.47-0.73; ACE-I vs. placebo: OR: 0.71; 95% Crl: 0.59-0.85; ARB: OR: 0.71; 95% Crl: 0.59- 0.85. Beta blockers and CCB less effective	N/A

				other major CV events					
Lind et al, Glycaemic control and incidence of HF in 20985 pts with type 1 diabetes: an observational study. Lancet 2011; Jun 24. <u>21705065</u> (71)	Assessment of glycemic control and risk for HF	Meta analysis	20,985 or higher A1C <6.5%	Type 1 DM	N/A	HF	N/A	A1C ≥10.5% vs A1C <6.5%: aHR: 3.98; 95% CI: 2.23-7.14; p<.001;	Used hospital admissions and did not include asymptomatic HF pts, so true incidence of HF underestimated.
Pfister, et al, A clinical risk score for HF in pts with type 2 diabetes and macrovascular disease: an analysis of the PROactive study. Int J Cardiol. 2011;May 31. 21636144 (72)	Identification of risk associated with DM	RCT	4,951	Type 2 DM	N/A	HF	3	Medium risk: HR: 3.5; 95% CI: 2.0-6.2; p<0.0001 High risk: HR: 10.5; 95% CI: 6.3- 17.6; p<0.0001	HF was pre-defined by investigator, but rather reported as SAE in the trial. Trial population may not be generalizable to clinical population.
Kenchaiah et al, Obesity and the risk of HF. NEJM, 2002;347:305-313. <u>12151467</u> (73)	Assessment of HF risk associated with obesity	Prospective cohort	5,881	≥30 y; BMI ≥18.5;free of HF at baseline	N/A	HF	14	Women, HR: 2.12; 95% CI: 1.51- 2.97 Men, HR: 1.90; 95% CI: 1.30-2.79	Possible misclassification of HF and subjects mostly white and results not generalizable to other races.
Kenchaiah, Sesso, Gaziano, Body mass index and vigorous physical activity and the risk of HF among men. Circulation, 2009;119:44-52. <u>19103991</u> (74)	Assessment of risk associated with obesity and effect of exercise	Prospective cohort, secondary analysis of RCT	21,094	Free of known heart disease at baseline.	N/A	Incidence of HF	20.5	Every 1 kg/m2 increase in BMI is associated with 11% (95% CI: 9- 13) increase in risk of HF. Compared to lean active men: Lean inactive: HR:1.19; 95% CI: 0.94-1.51, Overweight active: HR:1.49; 95% CI: 1.30-1.71), Overweight inactive: HR: 1.78; 95% CI: 1.43- 2.23), Obese active: HR: 2.68; 95% CI: 2.08-3.45, Obese inactive: HR: 3.93; 95% CI: 2.60-5.96	Low incidence of HF as cohort comprised of physicians who are healthier than the general population. BMI measures and physical activity were self-reported. These measures were only taken at baseline and tend to change over time. This cohort consisted only of men and results not generalizable to women.

Verdecchia et al, Effects of telmisartan, ramipril and their combination on LVH in individuals at high vascular risk in ONTARGET and TRANSCEND. Circulation 2009;120:1380-1389. <u>19770395</u> (75)	Evaluate effects of ACE, ARB, or both on development of LVH in pts with atherosclerotic disease.	RCT	23,165 for ONTARGET, 5,343 in TRANSCEND	Hx of CAD, PAD, cerebrovascular disease.	N/A	LVH	5	Telmisartan vs placebo: OR: 0.79; 95% CI: 0.68-0.91; p=0.0017. Telmisartan vs. ramipril: OR: 0.92; 95% CI; 0.83-1.01; p=0.07 Telmisartan + ramipril vs. ramipril: OR: 0.93; 95% CI: 0.84-1.02; p=0.12) Telmisartan vs telmisartan + ramipril: OR: 1.01: 95% CI: 0.91-1.12	Diagnosis of LVH was based on ECG, which is less sensitive than echocardiography and was binary (yes/no) instead of quantitative.
Braunwald et al; ACE inhibition in stable coronary artery disease. NEJM 2004;351:2058- 2068. <u>15531767</u> (76)	Evaluate the effect of trandolapril on vascular events	RCT	8,290; 4,158 (trandolpril); 4,132 (placebo)	Stable CAD	N/A	Major CV events	4.8	HR: 0.95; 95% Cl: 0.88-1.06; p=0.43	Results not significant possibly because the pts enrolled were at lower risk for CV events compared to other trials of ACEI.
Mills et al, Primary prevention of cardiovascualr mortality and events with statin treatments. J Am Coll Cardiol; 2008;52:1769- 1781 <u>19022156</u> (77)	Evaluation of primary prevention of CV events with statins	Meta analysis	53,371	N/A	N/A	Major CV events	N/A	RR: 0.84; 95% CI: 0.77-0.95; p=0.004	N/A
Taylor et al, Statins for the primary prevention of CV disease. Cocrane Database Syst Rev, 2011; CD004816 <u>21249663</u> (78)	Assess benefit and risk of statins for prevention of CVD	Meta analysis	34,272	RCTs of statins with minimum duration of 1 y and f/u of 6 mo, in adults with no restrictions on their total LDL or HDL cholesterol levels, and where ≤10% had a hx of CVD, were included.	N/A	All-cause mortality and fatal/nonfatal CVD	N/A	All-cause mortality: RR: 0.84; 95% Cl: 0.73-0.96) Fatal/non-fatal CVD: RR: 0.70, 95% Cl: 0.61-0.79	N/A
Abramson et al; Moderate alcohol consumption and risk fo HF among older persons. JAMA, 2001;285:1971-1977. 11308433 (79)	Assessment of risk associated with alcohol use in older adults.	Prospective cohort	2,235	Age ≥65 y; lived in New Haven, Conn, and free of HF at baseline	Heavy alcohol consumption (>70 oz.)	New HF	N/A	No alcohol: aRR: 1.00 (referent), 1-20 oz: aRR: 0.79; 95% CI: 0.60- 1.02), 21-70 oz: aRR: 0.53; 95% CI: 0.32-0.88. (p for trend=0.02)	Observational study, could not account for all possible confounders, alcohol consumption was self-reported.

Walsh et al; Alcohol consumption and risk for CHF in the Framingham Heart Study. Ann Intern Med,	Assessment of risk associated with alcohol use	Community based cohort	7,223	N/A	N/A	New CHF	N/A	Compared to men who consumed <1 drink/wk, men who consumed 8-14 drinks/wk: HR for CHF: 0.41; 95% CI: 0.21-0.81. In women: those who consumed	Self-reported alcohol consumption.
<u>11827493</u> (80)								0.25-0.96, compared with those who consumed <1 drink/wk.	
Choueiri et al, CHF risk in pts with breast cancer treaated with bevacizumab. J Clin Oncol, 2011; 29:632- 638. 21205755 (81)	Risk of CHF pts with breast cancer receiving bevacizumab	Meta analysis	3,784	RCTs published between January 1966-March 2010 in English.	N/A	New CHF	N/A	RR: 4.74; 95% CI; 1.84-12.19; p=0.001)	Data on other risk factors for CHF were not collected or unavailable.
Du et al; Cardiac risk associated with the receipt of anthracycline and trastuzumab in a alarge nationwide cohort of older women with breast cancer, 1998-2005. Med Oncol, 2010;Oct 22. 20967512 (82)	New HF	Registry	47,806	Women with breast cancer ≥65 y	N/A	New HF	N/A	HR: 1.19 anthracycline alone, HR: 1.97 trastuzumab alone, HR: 2.37 combo	N/A
Sawaya et al; Early detection and prediction of cardiotoxicity in chemotherapy treated pts. Am J Cardiol, 2011; 107:1375-80. <u>21371685</u> (83)	To assess whether early ECHO measurements of myocardial deformation and biomarkers (hsTnl and NT-proBNP) could predict the development of chemotherapy-induced cardiotoxicity in pts treated with anthracyclines and trastuzumab.	Prospective cohort	43	>18 y of age diagnosed with HER- 2-overexpressing breast cancer and either scheduled to receive treatment including anthracyclines and trastuzumab or scheduled to receive trastuzumab after previous anthracycline treatment.	Pts with LVEFs ≤50%	Cardiotoxicit y	N/A	Elevated hsTnI at 3 mo (p =0.02) and a decrease in longitudinal strain between baseline and 3 mo (p =0.02) remained independent predictors of later cardiotoxicity. Neither the change in NT-proBNP between baseline and 3 mo nor an NT-proBNP level higher than normal limits at 3 mo predicted cardiotoxicity	Small sample size

McKie et al; The prognostic value of NT- proBNP for death and CV events in healthy normal and stage A/B HF subjects. J Am Coll Cardiol, 2010;55:2140- 2147. 20447539 (84)	NT-proBNP as a predictor of death, CV events	Cohort	1,991	Age ≥45 y, lives in Olmsted County, Minnesota	Symptomatic HF (stages C and D HF)	Death, HF, CVA, MI	8.9 years	HR:1.26 per log increase in fully adjusted model in stage A/B pts (95% CI: 1.05–1.51; p=0.015). NT-proBNP was not predictive of death or CV events in the healthy normal subgroup.	Underpowered to detect association of NT-proBNP with adverse outcomes in the healthy normal subgroup.
Velagaleti et al; Multimarker approach for the prediction of HF incidence in the community. Circulation, 2010;122:1700-1706. 20937976 (85)	Evaluation of markers for HF development in the community	Cohort	2,754	Free of HF	N/A	HF	N/A	BNP: aHR: 1.52; 95% CI: 1.24– 1.87; p<0.0001 UACR: aHR: 1.35; 95% CI: 1.11– 1.66; p=0.004	Subjects mostly white and results not generalizable to other races.
Blecker et al; High normal albuminuria and risk of HF in the community. Am J Kidney Dis, 2011; 58:47-55. 21549463 (86)	Evaluation of albuminuria as risk for new HF	Cohort	10,975	Free of HF	N/A	HF	8.3	aHR: 1.54 (95% CI,:1.12-2.11) UACR normal to intermediate- normal; aHR: 1.91 (95% CI: 1.38- 2.66) high-normal; aHR: 2.49 (95% CI: 1.77-3.50) micro; aHR: 3.47 (95% CI: 2.10-5.72) macro (p<0.001)	N/A
deFilippi et al; Association of serial measures of cardiac troponin T using a sensitive assay with incident HF and CV mortality in older adults. JAMA, 2010; 304:2494- 2502. <u>21078811</u> (87)	Assessment as to whether baseline cTnT or changes predict HF	Cohort	4,221	N/A	N/A	HF	11.8	Complex >99th percentile at baseline: 6.4; change from neg to pos: 1.61 increase.	Samples were available in ~3/4 of the cohort at baseline, and differential absence of cTnT measures may have introduced bias into the estimates of associations with HF and CV death.
Heidenreich, et al, Cost- effectiveness of screening with BNP to identify pts with reduced LVEF. J Am Coll Cardiol, 2004;43:1019- 1026. 15028361 (88)	Cost effectiveness of BNP screening	Cost benefit analysis	N/A	Asymptomatic pts.	N/A	N/A	N/A	BNP testing followed by echocardiography is a cost- effective screening strategy for men and possibly women at age 60 y - for every 125 men screened, 1 y of life would be gained at a cost of \$23,500.	Did not evaluate other blood tests such as pro-BNP as prevalence and outcome data were not available.

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; AV, atrioventricular; BMI, body mass index; BP, blood pressure; CABG, coronary artery bypass graft; CAD, coronary artery disease; CCB, calcium channel blocker; CHF, congestive heart failure; cTnT, cardiac troponin T; CV, cardiovascular; CVA, cerebrovascular accident; CVD, cardiovascular disease; DM, diabetes mellitus; DBP, diastolic blood pressure; ECG, electrocardiography; HDL, high density lipoprotein; HF, heart failure; hsTnI,

high-sensitivity troponin I; HTN, hypertension; LDL, low density lipoprotein; Hx, history; LVH, left ventricular hypertrophy; MI, myocardial infarction; N/A, not applicable; N-terminal pro–B-type natriuretic peptide; ONTARGET, Ongoing Telmisartan Along and in Combination with Ramipril Global Endpoint Trial; PAD, peripheral arterial disease; PAR, population attributable risk; pro-BNP, pro–B-type natriuretic peptide; pts, patients; RCT, randomized clinical trial; SAE, serious adverse event; SBP, systolic blood pressure; TRANSCEND, Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with CV Disease; and UACR, urinary albumin-to-creatinine ratio.

	Data Supplement 12	. Stage B: Preventing	the Syndrome of Clini	cal HF With Low EF	(Section 7.2)
--	--------------------	-----------------------	-----------------------	--------------------	---------------

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient F	Population	End	points	Statistical Analysis (Results)	P Values & 95% Cl:	OR: HR: RR:	Study Limitations	Findings/ Comments
				Inclusion	Exclusion	Primary	Secondary					
				Criteria	Criteria	Enapoint	Enapoint					
ACE INHIbitors Effect of Captopril on Mortality and Morbidity in Pts with LVD after MI Pfeffer, Marc A; NEJM 1992 (SAVE) <u>1386652</u> (89)	Investigate whether captopril could reduce morbidity and mortality in pts with LVSD after an MI	RCT	2,331	Within 3-60 d of MI; EF ≤40%; no overt HF or ischemic symptoms; age 21-80 y;	Cr > 2.5 mg/dL; relative contraindication to ACEI; need for ACEI to treat symptomatic HF or HTN; other conditions limiting survival; "unstable course" after MI	All-cause mortality; CV mortality; mortality & derease in EF of 9 units; development of overt HF (despite diuretics and digoxin therapy); hospitalization for HF; fatal or nonfatal MI; mean f/u 42 months	N/A	N/A	Risk Reduction: All-cause mortality Cl: 3-32% p=0.019 death from CV caus Cl: 5-35%; p<0.001 development of sev (95% Cl: 20-50%; p HF hospitalization 2 4-37%; p= 0.019); r 25% (95% Cl: 5-40	19% (95% ; se 21% (95%); ere HF 37% <0.001); 22% (95% CI: ecurrent MI %; p=0.015)	Low rate of beta blocker use; Recruitment 1987- 1990: significant changes in revascularization strategies	Reduction in severe HF and HF hospitalization among pts with MI and LVSD without symptoms of HF
Effect of Enalapril on Mortality and the Development of HF in Asymptomatic Pts with Reduced LVEF. The SOLVD Investigators. NEJM 1992 (SOLVD Prevention) 1463530 (90)	Study the effect of an ACEI, enalapril, on outcomes in pts with LVSD not receiving drug therapy for HF	RCT	4228	EF <u></u> 35%; not receiving diuretics, digoxin or vasodilators for HF (asymptomatic LVSD)	N/A	All-cause mortality; mean f/u 37.4 months	Development of HF & mortality; HF hospitalization & mortality	N/A	Risk Reduction: All-cause mortality 95% CI -8 - 21%; p mortality 12% (95% 26%; p=0.12); mortality & develop 29% (95% CI: 21-3 p<0.001); mortality & HF hosp 20% (95% CI: 9-30	8% (95% CI: =0.3); CV CI: -3 - ment of HF 5%; bitalization %; p<0.001)	Low rate of beta- blocker use	Reduction in combined endpoints of development of HF & mortality and HF hospitalization and mortality among pts with asymptomatic LVSD

Effect of enalapril on 12-y survival and life expectancy in pts with LVSD: a follow-up study. Jong, P Lancet 2003 <u>12788569</u> (91)	12-y follow-up of SOLVD to establish if the mortality reduction with enalapril among pts with HF was sustained and wheather susequent reduction in mortality would emerge among those with asymptomatic ventricular dysfunction	Cohort	5,165	SOLVED prevention and treatment trial populations alive at completion of RCTs	N/A	All-cause mortality	N/A	In combined trials (Prevention and Treatment), enalapril extended median survival 9.4 mo (95% CI 2.8-16.5; p=0.004)	In the Prevention Trial mortality 50.9% in enalapril group vs. 56.4% in placebo group; p=0.001. In overall cohort, HR for mortality 0.9 (0.84-0.95); p=0.0003 for enalapril vs. placebo	N/A	Mortality benefit of enalapril among pts with asymptomatic LVSD
Statins											
Intensive Statin Therapy and the Risk of Hospitalization for HF After an ACS in the PROVE IT-TIMI 22 Study Scirica, Benjamin M JACC 2006 <u>16750703 (</u> 92)	Determine whether intensive satin therapy reduces hospitalization for HF in high risk pts (intensive statin therapy simvastatin 80 vs. moderate statin therapy pravastatin 40mg)	RCT	4,162	ACS (AMI or high- risk UA) within 10 d; total cholesterol <240 mg/dL; stable condition;	Life-expectancy <2 y; PCI within the prior 6 mo (other than for qualifying event); CABG within 2 mo; planned CABG	Hospitalization for HF (time to first HF hospitalization that occurred 30 d or longer after randomization)	MI	Meta-analysis of 4 large RCTs of statin therapy (TNT, A to Z, IDEAL, PROVE- IT) N=27,546 Reduction in HF hospitalization: OR: 0.73; 95% CI: 0.63-0.84; p<0.001 [x2 for heterogeneity = 2.25, p=0.523)	Atorvastatin 80mg associated with reduction in HF hospitalization: 1.6% vs. 3.1%; HR 0.55; 95% CI: 0.35-0.85; p=0.008 when adjusted for history or prior HF HR 0.55; 95% CI: 0.35- 0.36; p=0.008	Sub-study of PROVE IT-TIMI 22. Did not exclude those with prior HF (low rates)	In pts with ACS, intensive statin therapy reduced new onset HF Also perfomred meta-analysis of 4 large statin trials (2 ACS, 1 hx of MI, 1 clinically evident CHD) demonstrating benefit of intensive stating therapy in preventing HF hospitalizaiton
Early Intensive vs a Delayed Conservative Simvastatin Strategy in Pts with ACS. Phase Z of the A to Z Trial.	To compare early initiation of an intensive statin regimen with delayed initiation of a less intensive regimen in pts	RCT	4,479	STEMI or NSTEMI; total cholesterol ≤250 mg/dL; age 21-80; at least 1 high-risk characteristic (>70, DM, hx of CAD, PVD or	Receiving statin therapy, planned CABG, PCI planned within 2 wks of enrollment, ALT level >20% ULN, Cr >2.0mg/dL,	Composite: CV death, non-fatal MI, readmission for ACS, stroke	Individual components of primary endpoint and reascularization due to documented ischemia, all-cause	N/A	New onset HF reduced with intensive therapy: 5% vs 3.7%; HR 0.72; 95% CI: 0.53-0.98; p=0.04 Primary endpoint did not achieve significance: 16.7% vs 14.4%; HR 0.89; 95% CI: 0.76- 1.04; p=0.14	Development of HF was a secondary endpoint Did not achieve primary endpoint	In pts with ACS, intensive statin therapy reduced new onset HF

de Lemos, James	with ACS	stroke	, elevated co	oncomitant	mortality, new-		
A. JAMA		CKMB	3 or th	herapy with	onset HF		
2004		troopo	onin levels, ag	gents known to	(requiring		
<u>15337732 (</u> 93)		recurre	ent angina er	enhance myopathy	medications or		
		with S	T changes, ris	isk; prior hx of	hospitalization),		
		ECG e	evidence of no	ion-exercise	CV hosptialization		
		ischen	nia on pre- re	elated elevations			
		discha	arge stress in	n CK or			
		test, m	nultivessel no	ontraumatic			
		diseas	se) rh	habdomyolysis			

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS acute coronary syndrome; ALT, alanine aminotransferase; AMI, acute myocardial infarction; CABG, coronary artery bypass surgery; CAD, coronary artery disease; CHD, chronic heart disease; CKMB, creatine kinase-MB; Cr, creatinine; CV, cardiovascular; DM, diabetes mellitus; ESG, electrocardiogram; EF, ejection fraction; f/u, follow-up; HF, heart failure; HTN, hypertension; hx, history; LVSD, left ventricular systolic dysfunction; LVD, left ventricular dysfunction; MI, myocardial infarction; NSTEMI, non-ST elevation mysocardial infarction; PCI, Percutaneous coronary intervention; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy -- Thrombolysis in Myocardial Infarction 22; Pts, patients; PVD, Peripheral artery disease; RCT, randomized control trial; SAVE, The Survival and Ventricular Enlargement trial; SOVLD, Studies of Left Ventricular Dysfunction; STEMI, ST elevation myocardial infarction; UA, unstable angina; and ULN, upper limit of normal.

Data Supplement 13. Stage C: Factors Associated With Outcomes, All Patients (Section 7.3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Po	opulation	Endpoints		Statistical Analysis (Results)	Study Limitations	Findings/Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Education										

Long-term prospective RCT using repetitive education at 6-mo intervals and monitoring for the adherence in HF outpt (The REMADHE Trial). Bocchi, Edimar Alcides. 2008 <u>12196335 (</u> 94)	To determine whether a disease management program with repeated multidisciplinary education and telephone monitoring benefits HF outpt already under the care of a with HF experience cardiologist.	RCT	350	Diagnosed with HF	N/A	Combined death or unplanned first hospitalization and QoL changes	Hospitalization, death and adherence.	In the intervention group: QoL improved and Lower: deaths (p<0.003) or unplanned hospitalizations (p=0.008; 95% CI: 0.43- 0.88) , hospitalizations(p<0.001) , total hospital d during follow-up (p<0.001), and ED visits (p<0.001) No difference in estimated total mortality (p=ns; 95% CI: 0.55-1.13) or death during hospitalization (p=ns; 95%CI: 0.53-1.41)	Absence of blinding. Perception of better QoL in the intervention group due healthcare provider support as needed. Confouding by social conditions.	Despite modest adherence program reduced unplanned hospitalization, total hospital d, the need for emergency care and improved QoL.
Effect of discharge instructions on readmission of hospitalized pts with HF: do all of the joint commission on accreditation of healthcare organizations HF core measures reflect better care? VanSuch, M. 2006 <u>17142589</u> (95)	To determine whether documentation of compliance with any or all of the 6 required discharge instructions is correlated with readmissions to hospital or mortality.	Retrospective study	782	Age ≥18 y, principal diagnosis of HF, hypertensive heart disease with HF, or hypertensive heart and renal disease with HF, discharged to home, home care or home care with IV treatment	Pts discharged to skilled nursing facilities or other acute- care hospitals.	Time to: death and readmission for HF or readmission for any cause	N/A	 68% of pts received all instructions, and 6% received no instructions. Pts with all instructions (compared to those who missed at least one type of instruction) were significantly less likely to be readmitted for any cause or HF (p= 0.003) Documentation of discharge instructions was correlated with reduced readmission rates. No association between documentation of discharge and instructions and mortality. 	Discharge instructions given but not documented. Discharge instructions could be a surrogate indicator for another intervention such as higher quality nursing care. Pt factor could have influenced confounding results. Generalizability limited. No active follow-up. Not all quality of care outcomes were assessed.	Documentation of discharge information and pt education appears to be associated with reductions in both mortality and readmissions.

Discharge education improves clinical outcomes in pts with chronic HF. Koelling, T. 2005 <u>15642765</u> (96)	To assess whether a pt discharge education program (the study intervention) improves clinical outcomes in chronic HF pts.	RCT	223	Admitted to hospital with a diagnosis of HF and documented left ventricular systolic dysfunction (EF <40%)	Evaluation for cardiac surgery, Noncardiac illness likely to increase 6-mo mortality or hospitalization risk, Inpatient cardiac transplantation evaluation	Total number of d hospitalized or dead in the 180-d follow-up period.	Clinical events, symptoms, and self-care practices.	The intervention group versus controls had fewer d hospitalized or dead in the 180-d follow-up period (p= 0.009), lower risk of rehospitalization or death (RR: 0.65; 95% CI: 0.45-0.93, p= 0.018), as well as lower costs of care, including cost of the intervention (lower by \$2823 per pt, p= 0.035).	May not be generalizable- only 223 (38%) participated. pts being evaluated for transplantation not studied. Pts followed by the UMHFP not enrolled. Nurse coordinator unblined. Lack of reliability of self-reported self-care measures.	A 1-h teaching session at the time of hospital discharge resulted in improved clinical outcomes, increased self- care and adherence, and reduced cost of care in pts with systolic HF.
Effects of an interactive CD- program on 6 mo readmission rate in pts with HF- a RCT. Linne, A. 2006 <u>16796760</u> (97)	To evaluate the impact of added CD-ROM education on readmission rate or death during 6 mo.	RCT	230	Diagnosis of HF (either LVEF < 40% by ECHO or at least 2 of these criteria: pulmonary rates, peripheral edema, a 3rd heart sound and signs of HF on chest x-ray).	Somatic disease, physical handicap with difficulty communicating or handling technical equipment, inability to speak Swedish, incompliance due to alcohol/drug abuse or major psychiatric illness, Participation in another trial	Difference in rate of all cause readmission and death within 6 mo after discharge.	N/A	Intervention group achieved better knowledge and a marginally better outcome (p=NS).	Only 37% completed questionnaire, pts had to come twice to the CD-based education, first as inpts, then 2 wk after discharge. Returning to the hospital may have discouraged participation, especially in sicker pts.	Additional education of HF pts with an interactive program had no effect on readmission rate or death within 6 mo after discharge.

Computer-based education for pts with chronic HF. A randomized, controlled, multicenter trial of the effects on knowledge, compliance and QoL. Stromberg, A. 2006	To evaluate the effects of a single-session, interactive computer-based educational program on knowledge, compliance and QoL in HF pts. To assess gender differences.	RCT	154	Diagnosis of HF	None specified	Knowledge of HF, treatment compliance, self- care and QoL.	N/A	Computer-based group (intervention), knowledge increased: After 1 mo: p= 0.07, After 6 mo: p= 0.03 Women: significantly lower QoL and did not improve after 6 mo as men did (p= 0.0001). No differences between groups in compliance, self-care or QoL.	Data on knowledge collected through questionnaire, small sample size.	Computer-based education increased knowledge about HF compared to traditional teaching alone.
Long-term result after a telephone intervention in chronic HF. Ferrante, D. 2010 20650358 (99)	To assess rate of death and hospitalization for HF 1 and 3 y after a randomized trial of telephone intervention with education to improve compliance in stable HF pts with HF.	Follow-up after a RCT	1,518	Outpt with stable, chronic HF	None specified	Death and hospitalization for HF, 1 and 3 y after intervention ended.	Long term benefits	Rate of death or hospitalization for HF lower in the intervention group: 1 y: RR: 0.81; p= 0.013 95% CI: 0.69- 0.96 3 y : RR: 0.72; p= 0.0004 95% CI: 0.60-0.87 Benefit caused by a reduction in admission for HF after 3 y Functional capacity better in intervention group Pts who showed improvement in 1 or more of 3 key compliance indicators (diet, weight control, and medication) had lower risks of events (p< 0.0001).	Classification bias of events due to open trial design.	Benefit observed during the intervention period persisted and was sustained 1 and 3 y after the intervention ended. This maybe due to the intervention impact on pt behavior and habits.
HF self- management education: a systematic review of the evidence. Boren, S. 2009 <u>21631856</u> (100)	To identify educational content and techniques that lead to successful self- management and improve outcomes.	Systematic review of RCTs	7,413 pts from 35 trials	RCTs evaluating a self- management education program with patient-specific outcome measures.	Not randomized, No control group, Not in English, Failure to identify the content of the program, Providing similar educational content in all study arms,	Satisfaction, learning, self- care behavior, medication, clinical improvement, social functioning, hospital admissions and readmissions, mortality, and	N/A	Programs incorporated 20 educational topics in 4 categories- knowledge and self-management, social interaction and support, fluid management, and diet and activity. 113 unique outcomes were measured and 53% showed significant improvement in at least one study. Education on: sodium restriction associated with decreased mortality (p=0.07), appropriate follow-up associated with decreased cost	Unable to combine all the results. Difficult to compare interventions due to poor descriptions, and lack of transparency. All interventions not reproducible.	Review supports the benefits of educational interventions in chronic HF and suggests that some topics are related to certain outcomes.

					Did not identify educational techniques used, Measured only knowledge as an outcome.	cost.		(p=0.10), management and recognition of worsening function associated with lower social functioning (p= 0.10). Discussion of fluids associated with increased hospitalization (p=0.01) and increased cost (p=0.10).		
Effect of sequential education and monitoring program on QoL components in HF. Cruz, Fatima das Dores. 2010 <u>20670963</u> (101)	To determine if a DMP applied over the long- term could produce different effects on each of the QoL components.	Retrospective analysis (Extension of REMADHE trial, a RCT)	412	Under ambulatory care in a tertiary referral center and followed by a cardiologist with experience in HF. Age ≥18 Irreversible HF based on the modified Framingham criteria for at least 6-mo	Unable to attend educational sessions or who could not be monitored due to lack of transportation, or social or communication barriers, MI or unstable angina within past 6 mo, cardiac surgery or angioplasty within past 6 mo, hospitalized or recently discharged, any severe systemic disease that could impair expected survival, procedures that could influence follow-up, pregnancy or child-bearing potential	Change in QoL components during follow-up	Influence of the QoL score at baseline on pt survival.	Improved in the DMP intervention group: Global QoL scores: p<0.01 Physical component: p<0.01 Emotional component: p<0.01	QoL can be confounding. Loss of data due to morality during follow-up may have influenced QoL scores. Retrospective analysis of quality of life components.	Improvement of QoL is a fundamental target for the success of treatment of pts with HF. Specific components of the QoL assessment can behave differently over time and should stimulate the identification and development of new strategies and interventions. Targeting male pts and the emotional components of the QoL assessment in DMPs may be important in order to achieve a greater early improvement in QoL.
Social Support								•	•	

Long-term effect of social relationships on mortality in pts with CHF. Murberg, Terje. 2004 <u>15666956</u> (102)	To evaluate the effects of social relationships on morality risk in pts with stable, symptomatic HF.	Follow-up study	119	Diagnosed with HF	Unable to complete the questionnaires due to mental debilitation, previous heart transplantation	Perceived social support and isolation.	N/A	Social isolation a significant predictor of mortality (controlling for neuroticism, HF severity, functional status, gender, age): RR= 1.36; 95% CI: 1.04-1.78; p<0.03	Small sample size	Perceived social isolation an independent predictor of mortality in HF pts during a 6-y follow-up period. Experience of social isolation seems to be more critical than lack of social support.
The importance and impact of social support on outcomes in pts with HF: An overview of the literature. Luttik, M.L. 2005 <u>15870586</u> (103)	To review the literature on what is scientifically known about the impact of social support on outcomes in pts with HF.	Review	17 studies	Studies that investigated the relationship between social support and different outcomes in HF.	None specified	Social support and different outcomes in HF (readmission, mortality, QoL and depression).	N/A	4 studies found clear relationships between social support and rehospitalizations and mortality; the relationship between QoL and depression was less clear.	None noted	Social support is a strong predictor of hospital readmissions and mortality in HF pts. Emotional support in particular is important. Some studies show that support is also related to the prevalence of depression and with remission of major depression in HF. Less evidence to support a relationship between social support and QoL.
Social deprivation increases cardiac hospitalisations in chronic HF independent of disease severity and diuretic non-adherence. Struthers, A. 2000 <u>10618326</u> (104)	To examine whether social deprivation has an independent effect on emergency cardiac hospitalization in pts with chronic HF.	Cohort study	478	Admitted with an MI between January 1989- December 1992 and subsequently admitted for chronic HF between January 1989- December 1992, ≥3 diuretic prescriptions had to have been dispensed between January 1993- January 1994.	None specified	Emergency hospital admissions (all causes and for cardiac causes only)	N/A	Social deprivation significantly associated with an increase in the number of cardiac hospitalizations (p=0.007). Effect mainly caused by increasing the proportion of pts hospitalized in each deprivation category. 26% in deprivation category 1–2 vs. 40% in deprivation category 5–6 (p= 0.03). Effect of deprivation: independent of disease severity (as judged by the dose of prescribed diuretic), death rate, and duration of each hospital stay. Non-adherence with diuretic treatment could not account for these findings either.	Assessed adherence by whether pt had enough tablets in the house to cover the appropriate time period- measuring pt's maximum possible level of adherence. Poor adherence was associated with being male versus female but not with age, social deprivation, or diuretic dose. It is possible that diuretics caused more troublesome urinary symptoms in men because of prostatism, leading to poorer adherence.	Social deprivation increases the chance of rehospitalization independent of disease severity. Possible explanations are that doctors who look after socially deprived pts have a lower threshold for cardiac hospitalization or that social deprivation alters the way a HF pt accesses medical care during decompensation. Understanding how social deprivation influences both doctor and pt behavior in the prehospital phase is crucial to reduce the amplifying effect that social deprivation has

										cardiac hospitalizations.
Social support and self-care in HF. Gallager, R. 2011 <u>21372734</u> (105)	To determine the types of social support provided to HF pts and the impact of differing levels of social support on HF pts' self-care	Cross- sectional, descriptive (COACH sub- study)	333	Admitted to hospital for HF at least once before the initial hospitalization of the original study Age ≥18 y NYHA II-IV; evidence of underlying structural heart disease	Undergone cardiac surgery or PCI in the previous 6 mo, or if these procedures or heart transplantation was planned, Unable to participate in the COACH intervention or to complete the data collection forms	Self-care and social support	N/A	High level of support, compared to low or moderate levels reported significantly better self-care (p= .002) High level of social support, compared medium or low levels, significantly more likely to: consult with a health professional for weight gain (p= 0.011), limit fluid intake (p= 0.02), take their medication (p= 0.017), get a flu shot(p= 0.001), and exercise on a regular basis (p< 0.001).	Secondary analysis. Social support not prespecified in COACH trial. The measure and categories of social support have not been used previously either separately or as a composite measure. It is likely that other important factors influence HF self-care behavior as the multivariate model was not adequate.	The presence of social support by a partner is not sufficient to influence HF pts' self-care. Social support provided by partners needs to be of a quality and content that matches HF pts' perception of need to influence self-care.
Comorbidities	L	L		1	I					
A qualitative meta- analysis of HF self- care practices among individuals with multiple comorbid conditions. Dickson, V. 2011 <u>21549299</u> (106)	To explore how comorbidity influences HF self-care	Qualitative meta-analysis	99 pts from 3 trials	Mixed method studies. Included pts with HF with at least 1 comorbid condition	None specified	Perceptions about HF and HF selfcare	N/A	Narrative accounts revealed the most challenging self-care skills: adherence to diet, symptom monitoring, and differentiating symptoms of multiple conditions. Emerging themes included: 1) attitudes drive self-care prioritization and 2) fragmented self-care instruction leads to poor self-care integration and self-care skill deficits.	Generalizability limited due to homogeneous sample. Interpretation of findings relied on interview data available from the primary studies. Findings may be baised because samples were recruited from HF specialty settings, possibly better managed clinically than community samples.	Individuals with multiple chronic conditions are vulnerable to poor self-care because of difficulties prioritizing and integrating multiple protocols. Adherence to a low-salt diet, symptom monitoring, and differentiating symptoms of HF from other chronic conditions are particularly challenging. Difficulty integrating self-care of different diseases and fragmented instructions regarding those conditions may contribute to poor outcomes.
Psychiatric comorbidity and greater hospitalization risk, longer length of stay and higher hospitalization costs in older adults with HF. Sayers, Steven. 2007 <u>17714458</u> (107)	To explore associations between psychiatric comorbidity and rehospitalization risk, length of hospitalization, and costs in adults with HF.	Cohort study	21429	Medicare beneficiaries hospitalized during 1999.	HF was not a primary cause of any admission during 1999, Comorbid dementia or organic brain syndrome diagnosis	Psychiatric comorbidity and rehospitalization risk, length of hospitalization, and costs.	N/A	Overall, 15.8% of pts hospitalized for HF had a coded psychiatric comorbidity. Most commonly coded comorbid psychiatric disorder was depression (8.5% of the sample) (p< 0.001). Most forms of psychiatric comorbidity were associated with greater inpatient utilization, including risk of additional hospitalizations, d of stay, and hospitalization charges (p< 0.001). Additional hospitalization costs associated with psychiatric comorbidity ranged up to \$7,763, and additional length of stay ranged up to 1.4 d (p< 0.001).	Claims usage based administrative data. Information unavailable regarding the severity of HF in the sample. The possibility that outcomes may be worse for pts with coded comorbid psychiatric diagnoses as opposed to the presence of the conditions themselves cannot be excluded. Cross- sectional design.	Psychiatric comorbidity appears in a significant minority of pts hospitalized for HF and may affect their clinical and economic outcomes. The associations between psychiatric comorbidity and use of inpatient care are likely to be underestimated because psychiatric illness is known to be under detected in older adults and in hospitalized medical pts.
--	---	----------------------	--------	---	--	--	-----	---	---	--
The relevance of comorbidities for HF treatment in primary care: A European survey. Sturm, H. 2006 <u>16084761</u> (108)	To determine the impact of pt characteristics and comorbidities on chronic HF management, and to identify areas of prescribing that could be improved.	Descriptive study	11,062	Diagnosis of chronic HF and/or a history of MI during a 2- mo period in 1999	None specified	Influence of pt characteristics on drug regimens		Combined drug regimens given to 48% of HF pts (2.2 drugs on average). Pt characteristics accounted for 35%, 42% and 10% of the variance in 1-, 2- and 3-drug regimens, respectively. MI, AF, DM, HTN, and lung disease influenced prescribing most (OR=1.3; 95% CI: 1.2-1.4) AF made all combinations containing beta blockers more likely. For single drug regimes, MI increased the likelihood of non-recommended beta blocker monotherapy while for combination therapy, recommended regimes were most likely. For both HTN and DM, ACEI were the most likely single drug, while the most likely second drugs were beta blockers in HTN and digoxin in DM.	Drug regimens defined to make comparisons within levels of similar treatment intensity possible. Adherence rates depend on the indicators used.	Pt characteristics have a clear impact on prescribing in European primary care. Up to 56% of drug regimens were rational, taking pt characteristics into account. Situations of insufficient prescribing, such as pts post MI, need to be addressed specifically.

Frequent non-	To discuss in	Review	37	None specified	None specified	N/A	N/A	About 50% of pts with untreated HTN	No limitations addressed.	This review of the literature
cardiac	more detail the		studies					will develop HF. Pressure overload		clearly demonstrates that
comorbidities in pts	impact of co-							leads to the development of LV		noncardiac comorbidities are
with chronic HF.	existing							hypertrophy and diastolic dysfunction.		common in pts with HF and
Dahlstrom, Ulf.	HTN, DM,									that it is important to
2005	COPD in pts							DM occurs in about 20–30% of pts		recognize these conditions
	with HF.							with HF.		and
<u>15718170</u> (109)										take them into consideration
								COPD occurs in approximately 20-		when selecting treatment for
								30% of HE pts.		these pts. Appropriate
										treatment of the HF as well
								Anemia occurs in 20–30% of HE pts		as the concomitant diseases
								and is associated with functional		will improve the prognosis of
								impairment and increased mortality		these nts
								and morbidity. Combined treatment		these pts.
								with on thropointin and intravonous		
								iron has shown hanaficial affasts on		
								alinian eventeene and markidity		
								clinical symptoms and morbidity.		

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; CHF, congestive heart failure; COACH, Community Outreach and Cardiovascular Health; DM, diabetes mellitus; DMP, disease management program; ECHO, echocardiogram; ED, emergency department; EF, ejection fraction; HF, heart failure; HTN, hypertension; IV, intravenous; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; PCI; percutaneous coronary intervention; pts, patients; QoL, quality of life; RCT, randomized control trial; REHMADE, Repetitive Education at Six-Month Intervals and Monitoring for Adherence in Heart Failure; UMHFP, University of Michigan Heart Failure Program

Data Supplement 14. Nonadherence (Section 7.3.1.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient P	opulation	End	ooints	Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Noncompliance										

Use of telehealth by older adults to manage HF. Dansky, K. 2008 20078015 (110)	To investigate the influence of telehealth on self-management of HF in older adults.	RCT	284	Admitted to a home health agency, Primary or secondary diagnosis of HF	None specified	Self-management of HF.	N/A	Confidence is a predictor of self- management behaviors. Pts using a video-based telehealth system showed the greatest gain in confidence levels with time (p= 0.035).	Small sample size. The home health agencies may have limited the external validity of the study. Examination of the effects of the telehealth interventions on specific behaviors was not possible.	Confidence is a positive predictor of self-management, which should encourage the development of interventions that focus on building self- care confidence in HF pts. These results contradict the stereotype that older adults are unable or unwilling to use technology.
Characteristics and inhospital outcomes for nonadherent pts with HF: findings from GWTG-HF. Ambardekar, A. 2009 <u>19781426</u> (111)	To determine the characteristics, treatments, quality of care, and inhospital outcomes of pts nonadherent to dietary and medication advice as precipitating factors for HF hospitalization.	Cohort study	54,322	Ages >18, pts reported in the GWTG-HF database from January 1, 2005- December 30, 2007	Pts with new diagnoses of HF	2 groups: Those in whom nonadherence contributed to HF admission and those without nonadherence.	Hospital outcomes and quality of care among nonadherent pts vs. those who were adherent.	Multivariate analysis of characteristics of nonadherence: Younger age (per y decrease) p<0.0001; 95% CI: 1.019-1.026; Male gender (vs. female) p<0.0001; 95% CI: (1.196-1.358); Nonwhite race (vs. white) p<0.0001; 95% CI: 1.358-1.632 No health insurance (vs. insurance) p<0.0001; 95% CI: 1.236-1.633 Multivariate analysis of outcomes with vs. without nonadherence: Mortality 1.55% v. 3.49%; p<0.0001 95% CI: 0.51-0.86 Mean length of stay 4.99 d vs. 5.63 p= 0.0017; 95% CI: 0.92-0.97	Rates of nonadherence may be underestimated due to self reporting and biased based on pt characteristics. GWTG-HF is a voluntary program so could over-represent high-performing hospitals. Data collected by chart reviews, only in-hospital measures were tracked so long term follow-up unknown.	Nonadherence is a common precipitant for HF admission. Medication nonadherence greater in younger pts, ethnic minorities and uninsured whereas dietary nonadherence was observed in older, overweight and diabetic pts. Nonadherent pts present with evidence of lower EF and greater volume overload yet have an inhospital course characterized by a shorter LOS and lower mortality. Care of nonadherent pts conformed with Joint Commission core measures but at lower rates with other

										guideline-based therapies.
Utilization of and adherence to drug therapy among Medicaid beneficiaries with CHF. Bagchi, A. 2007 <u>17919558</u> (112)	To determine the number of Medicaid beneficiaries with HF, identify the rate of HF drug use, estimate adherence rates, examine factors associated with HF drug use and treatment adherence, and explore policy implications.	N/A	45,572	Living in Arkansas, California, Indiana or New Jersey, enrolled in fee-for service Medicaid with pharmacy benefit coverage during 1998 and 1999 or until death HF (hospitalized and diagnosed during 1998 or diagnosed on ≥ 2 ambulatory visits during 1998)	Stays in nursing home facilities at any time during 1999	Adherence based on: MPR (no. of d a pt is supplied with ≥1 HF drug in relation to the no. of dbetween the pt's first and last prescription dates), MP (no.of d of continuous use of HF medications per mo)	N/A	Odds of having a HF prescription claim were <u>higher</u> with people: Age 65-74 vs. <65: p<0.01; 95% CI: 1.193- 1.344 Age 75-84 vs. <65: p<0.01; 95% CI: 1.458- 1.676 Age \geq 85 vs. <65: p<0.01; 95% CI: 1.458- 1.676 Age \geq 85 vs. <65: p<0.01; 95% CI: 1.162, 1.353 Dual Eligible : p<0.01; 95% CI: 1.466-1.580 Disabled: p<0.01; 95% CI: 1.388-1.537 Had CAD : p<0.01; 95% CI: 3.309-3.676 Had DM: p<0.01 95% CI: 2.085- 2.284 Hospitalized for HF in 1998: p<0.01; 95% CI: 1.579-1.701 Odds of having a HF prescription claim were <u>lower</u> among - Blacks vs. whites: p<0.01; 95% CI: 0.735-0.795 Other /unknown ethnic group vs. whites: p<0.01 95% CI: 0.840,-0.919 Men vs. women: p<0.01 95% CI: 0.722-0.775 Adherence better among age \geq 85 y than \leq 64 y, men than women, racial and ethnic minorities, dual	Measures of use and adherence are proxies based on prescriptions filled versus observations; findings may overestimate adherence to HF medications. Diagnoses recorded in claims may be incomplete, resulting in the omission of some pts from the study. Limited number of states may lead to biased results if Medicaid beneficiaries in study states are different than other states.	15.2% of diagnosed beneficiaries were not using any HF medications. Adults <65 y, men, ethnic minorities with hospital admissions for conditions other than HF, and beneficiaries with high CDPS scores had lower adherence.

								eligible and disabled, those with CAD or DM, those with HF related hospitalization (p<0.01). Adherence lower among those with larger proportions of claims for generic HF drugs, higher CDPS risk scores and those with non-HF- related Hospitalizations (p<0.01).		
Drug copayment and adherence in chronic HF: effect on cost and outcomes. Cole, A. 2006 <u>16863491</u> (113)	To measure the associations among prescription copayment, drug adherence and subsequent health outcomes in pts with HF	Retrospective Cohort Study	5,259 receiving ACE inhibitor 5,144 receiving Beta Blockers 2,373 receiving both	In Ingenix Research Data Mart, diagnosed with HF, and enrolled in commercial and/or Medicare supplemental plans in 2002; ≥2 physician visits or hospitalizations related to HF in 2002; \$100-10,000 in costs associated with HF diagnoses in 2002; continuously enrolled in health plan for all of 2002 and at least 1 d in 2003. ACEI and/or beta blockers dispensed at least twice.	Receiving 1 dispensing of ACEI, receiving 1 dispensing of beta blockers, had switched ACEI, had switched beta blockers, MPR <20% or >120%, had conflicting data in their dispensing records	Total cost of health care and hospitalization for HF MPR: proportion of d a pt was exposed to a drug while receiving a regimen	N/A	For pts taking ACEI, a \$10 increase in copayment was associated with a 2.6% decrease in MPR (95% CI: 2.0 - 3.1%) This change in adherence was associated with: a predicted 0.8% decrease in medical costs (95 %CI: -4.2 - 2.5%) a predicted 6.1% increase in the risk of hospitalization for chronic HF (95% CI: 0.5 - 12%). For pts taking beta blockers, a \$10 increase in copayment was associated with a 1.8% decrease in MPR (95% CI: 1.4 - 2.2%) This change in adherence was associated with: a predicted 2.8% decrease in medical costs (95% CI: -5.9 - 0.1%). a predicted 8.7% increase in the risk of hospitalization for chronic HF (95% CI: 3.8 - 13.8%)	Using prescription dispensing data to assess drug adherence eliminates pts to whom a drug is dispensed only once so may have contributed to high adherence observed. Dispensing data does not capture actual usage. ACEI more expensive than beta blockers resulting in higher copayment. Total medical costs might have been insensitive to specific changes in adherence to HF therapies.	Among pts with HF, higher drug copayments were associated with poorer adherence, although the magnitude of change was small and did not affect total health care costs. It was sufficient to increase risk of hospitalization for HF though.

The impact of perceived adverse effects on medication changes in HF pts. De Smedt, R. 2010 <u>20142025</u> (114)	To evaluate the impact of perceived adverse HF drug effects	Retrospective Cohort Study	754	Hospitalized for symptomatic HF NYHA class II-IV Age_18 Evidence of structural underlying heart disease	Invasive procedures in the mo before or planned within 3 mo after baseline Already enrolled in other studies Follow-up treatment at another HF clinic	Impact of perceived adverse effects on likelihood and type of changes of potential causal cardiovascular medication & initiation of medication to alleviate the adverse effect.	Risk of a related medication change significantly increased after dry cough, nausea, dizziness, or diarrhea. Dry cough showing the highest increase in risk (83%; 95% CI: 1.35-2.49) Pts with gout had a 4-fold higher likelihood of having alleviating medication started or intensified (95% CI: 2.23-8.05) With dry cough, a 10-fold increase in the likelihood of having ACE inhibitor switched to an ARB (95% CI: 3.2-35.55) Pts with gout had a 3-fold higher likelihood of having diuretics temporarily discontinued and reinitiated at a lower dosage (95% CI: 1.09-10.04)	Cannot be certain that the reported problems resulted from medication. Focused on specific medication changes and did not take all possible adequate actions into account. Recall bias possible- pts may not have reported all perceived problems in the questionnaires.	A considerable number of HF pts perceived possible AEs. The likelihood of medication being changed after pts perceived AEs was low. A high number of pts perceive medication AE.
Associations between outpt HF process-of-care measures and mortality. Fonarow, G. 2011 <u>21464053</u> (115)	To examine the relationships between adherence to several current and emerging outpt HF process measures and clinical outcomes.	Longitudinal/ Registry	15,177	Clinical diagnosis of HF or post-MI, LVEF ≤35%, ≥2 office visits with a cardiologist in the last 2 y	Noncardiovascular medical condition associated with an estimated survival of ≤1 y, received cardiac transplantation	Process-of-care HF measures: ACE inhibitor or ARB use, beta blocker use, aldosterone antagonist use, anticoagulant therapy for AF or flutter, CRT with defibrillator or pacemaker, ICD, and HF education for eligible pts.	Each 10% improvement in composite care was associated with a 13% lower odds of 24-mo mortality (p <0.0001; 95% CI: 0.84- 0.90) All process measures, except aldosterone antagonist use, were each independently associated with improved 24-mo survival (p <0.01 for all except aldosterone antagonist use).	Errors and omissions in the medical chart review process could have occurred. NYHA functional status was not quantified in many of the records, and was instead based on qualitative description. This study analyzed medications prescribed rather than actual pt adherence. Follow-up on vital status was not achieved for all pts. Race/ethnicity, socioeconomic status or pt adherence may be confounding variables. Findings may not apply to practices that differ from the IMPROVE HF outpt cardiology practices in this	These data demonstrate that adherence to HF process measures for ACEI/ARB, beta blocker, anticoagulation for AF, and HF education is significantly associated with survival in outpts with HF. These HF measures may be useful for assessing and improving HF care.

									study.	
A nurse-based management program in HF pts affects females and persons with cognitive dysfunction most. Karlsson, M. 2005 <u>16009290</u> (116)	To assess the effect of a nurse-based management program aimed at increasing HF pts' knowledge about disease and self-care and to relate the results to gender and cognitive function.	Substudy of the OPTIMAL project- a RCT	208	Age >60 Systolic dysfunction EF <45% NYHA II-IV	None specified	Pt knowledge of HF and self-care.	N/A	At baseline men knew more about HF compared to women (p<0.01). Females in the intervention group increased their knowledge of self- care between baseline and 6 mo compared to the female control group (p <0.05). Pts with cognitive dysfunction (MMSE <24) presented lower scores on knowledge as compared to those with a MMSE of >24 at baseline. These differences disappeared after the intervention (p<0.01).	Some pts were included one d after hospitalization and some the d before discharge; condition improvement may explain low number of pts scoring low on the MMSE; The drop-out rate was high in the MMSE sub-study.	Nurse-based outpt clinic with specially trained nurses effective in increasing pt knowledge about self-care. Females and those with cognitive impairment gain from such programs.

Pharmacist intervention to improve medication adherence in HF. Murray, M. 2007 <u>10030506</u> (117)	To determine whether a pharmacist intervention improves medication adherence and health outcomes compared with usual care for low- income pts with HF.	RCT	314	Age ≥50 y, confirmed diagnosis of HF, regularly used at least 1 CV medication for HF, not using or not planning to use a medication container adherence aid, access to a working telephone, and adequate hearing	Dementia	Medication adherence (tracked by using electronic monitors) and clinical exacerbations that required visits to the ED or hospitalization.	Health-related QoL, satisfaction with pharmacy services, and total direct health care costs.	Medication adherence greater in the intervention group 78.8% vs. 67.9% usual care group (95% CI: 5.0-16.7). At 3 mo, adherence decreased 70.6% in intervention and 66.7 in usual care (95% CI: -5.9-6.5). Medications were taken on schedule 47.2% in the usual care and 53.1% in the intervention group (95%CI: 0.4-11.5). At the end of intervention, taking of medication on schedule decreased 48.9% for usual care and 48.6% in intervention (95% CI: -5.9-6.5) ED visits and hospital admissions were 19.4% less in the intervention group (95% CI: 0.73-0.93). Annual direct health care costs were lower in the intervention group (95% CI: \$-7603-\$1338)	Pts were not permitted to use medication container adherence aids. Intervention involved 1 pharmacist and a single study site that served a large, indigent, inner-city population of pts. Because the intervention had several components, results could not be attributed to a single component.	A pharmacist intervention for outpts with HF can improve adherence to cardiovascular medications and decrease health care use and costs, but the benefit probably requires constant intervention because the effect dissipates when the intervention ceases.
Short and long-term results of a program for the prevention of readmissions and mortality in pts with HF: are effects maintained after stopping the program? Ojeda, S. 2005 <u>16051519</u> (118)	To evaluate whether improvement obtained during an intervention program were maintained after the program was stopped.	RCT	153	Discharged with a primary diagnosis of HF from the hospital cardiology ward.	Terminal disease, expected survival <6 mo, possibility of specific etiology treatment, wait list for heart transplant	Decrease in readmissions due to HF and in all- cause mortality event-free survival, defined on the basis of time to death or HF readmission.	Changes in pharmacological treatment and changes in quality of life MLHFQ	During the 16 <u>+</u> 8 mo treatment period, intervention group had: Lower rate of HF readmissions (p <0.01), and Less all-cause mortality Improvement in QoL (p=0.03) 1 y after the intervention, there were no differences between the groups (p=0.03).	Results cannot be extrapolated to all HF pts since the study included pts discharged from a cardiology service, who are usually younger and with fewer co-morbidities.	This intervention can reduce HF morbidity and mortality and improve quality of life but favorable effects decrease after program ends. Long- term programs are required to maintain beneficial effects.

Excessive daytime sleepiness is associated with poor medication adherence in adults with HF. Riegel, et al 2011 21440873 (119)	To determine if medication adherence differs in adults with HF and EDS compared to those without EDS and to test cognition as the mechanism of the effect.	Prospective cohort comparison study	280	Chronic stage C HF confirmed, able to complete the protocol (vision, hearing, English literacy), no more than mild cognitive impairment	Living in a long term care setting, working nights or rotating shifts, renal failure requiring dialysis, imminently terminal illness, plans to move out of the area, history of serious drug or alcohol abuse in prior y, major depression	Self-reported medication adherence	Cognition measured with a battery of neuropsychological tests	62% were nonadherent with medication regimen. Medication nonadherence was significantly more common in those with EDS Subjects with EDS and cognitive decline were >2 times more likely to be nonadherent (aOR 2.36, 95%CI: 1.12-4.99; p=.033). Secondary models using the Epworth Sleepiness score: The odds of nonadherence increased by 11% for each unit increase in ED (aOR 1.11, 95%CI: 1.04-1.19; p=.025). Subjects with EDS and mild	Medication adherence was self-reported.	HF pts who are sleepy have difficulty paying attention and thus forget to take their medications.
								6 mo follow-up (aOR 1.61; 95%CI: 1-03-2.50; p=.001). The group with EDS but without cognitive decline was twice as likely to be nonadherent (p=.014). 9% increase in the odds of nonadherence for each unit increase in EDS (p=.001). Lack of cognitive vigilance associated with nonadherence. (p=.024)		

Compliance with non- pharmacological recommendations and outcome in HF pts, van der Wal et al, 2010 20436049 (120)	To investigate the association between compliance with non- pharmacological recommendations (diet, fluid restriction, weighing, exercise) and outcome in pts with HF.	Secondary analysis of data from the COACH trial	830	Recently hospitalized for symptomatic HF, confirmed by the cardiologist, with evidence for underlying heart disease.	Invasive intervention within the last 6 mo or planned for the next 3 mo, inclusion in another study with additional visits to provider, or evaluation of CTX.	Composite of death or HF readmission and the number of unfavorable d.	mortality and readmission for HF	Pts non-compliant with ≥ 1 recommendations had a higher risk of mortality or HF readmission (p=0.01). Non-compliance with exercise was associated with an increased risk for mortality or HF readmission (p<0.01). Non-compliance with daily weighing was associated with an increased risk of mortality (p=0.02). Non-compliance (overall) and non- compliance with exercise were associated with a higher risk for HF readmission (p<0.05). Pts who were overall non- compliant or with weighing and exercise had more unfavourable d than compliant pts (p= 0.01).	Almost half had a first diagnosis of HF during the index hospitalization and then compliance was evaluated 1 mo after discharge, which could have influenced rates. 'Unfavorable d' difficult to evaluate. Self-report instrument used to measure compliance. Socially desirable responses possible.	HF pts who follow prescribed nonpharmacologic therapy have better outcomes than those who do not. Exercise and monitoring of daily weights are particularly important.
Nonpharmacologic Measures and Drug Compliance in Pts with HF: Data from the EuroHF Survey, Lainscak et al, 2007 <u>17378994</u> (121)	To describe the recall of and adherence to nonpharmacologic advice of pts enrolled in the European HF Survey	Descriptive survey of pts from 115 hospitals from 24 European countries	2,331	Clinical diagnosis of HF		Self-reported adherence to nonpharmacologic advice		After hospitalization for HF, pts recalled receiving 4.1 ± 2.7 items of advice with some regional differences. Recall of dietary advice was higher (63%) than for influenza vaccination (36%) and avoidance of NSAIDS (17%). Among those who recalled the advice, many did not follow it completely (cholesterol and fat intake 61%; dietary salt 63%; influenza vaccination 75%; avoidance of NSAIDS 80%). A few indicated they ignored the advice completely. Pts who recalled >4 items versus <4 items were younger and more often received ACE-I (71% vs 62%), beta blockers (51% vs 38%), and spironolactone (25% vs 21%).	Younger pts who were more mobile and had greater social support were more likely to attend interview. Possible response bias.	Younger age and prescription of appropriate pharmacologic treatment are associated with higher rates of recall and implementation.

ACEI indicates angiotensin-converting-enzyme inhibitor; AE, adverse event; AF, atrial fibrillation; ARB, angiotensin receptor blocker; CAD, coronary artery disease; CDPS, Chronic illness and disability payment system; CHF, congestive heart failure; COACH, Community Outreach and Cardiovascular Health; CTX, chest x-ray; CRT, Cardiac resynchronization therapy; CV, cardiovascular; DM, diabetes mellitus; ED, emergency department; EDS, excessive daytime sleepiness; EF, ejection fraction; GWTG-HF; Get with the Guidelines-Heart Failure; HF, heart failure; ICD, implantable cardioverter-defibrillator; IMPROVE-HF, The Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting; LOS, length of stay; LVEF, left ventricular © American College of Cardiology Foundation and American Heart Association, Inc. 46

ejection fraction; MI, myocardial infarction; MLHFQ, Minnesota Living with Heart Failure questionnaire; MMSE, Mini Mental State Examination; MP, Medication Persistence; MPR, medication possession ratio, N/A, not applicable; NSAID, nonsteroidal antiinflammatory drugs; NYHA, New York Heart Association; OPTIMAL, optimising congestive heart failure outpatient clinic project; pts, patients; QoL, quality of life; and RCT, randomized clinical trial.

Data Supplement 15. Treatment of Sleep Disorders (Section 7.3.1.4)

Study Name, Author, Year	Aim of study	Study Type	Study Size	Patient Pop	ulation	Endpoi	nts	Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Continuous positive airway pressure for central sleep apnea and HF (CANPAP). Bradley, T.D. et al 2005 <u>16282177</u> (122)	To test the hypothesis that long-term treatment of CSA with CPAP in HF pts receiving optimal medical therapy reduces the combined rates of death and heart transplant.	11 center RCT	258	18-79 y, NYHA II-IV, HF due to ischemia, HTN, or idiopathic DCM, stable condition, optimal medical therapy for 1+ mo, LVEF <40%, CSA with ≥15 apnea- hypopnea index (AHI) and >50% of AHI had to be central.	Pregnancy, MI, USA, cardiac surgery within prior 3 mo, OSA	Death and heart transplantation	Hospitalizations, EF, exercise capacity, QoL, neurohormones	No difference between control (n=130) and CPAP (n=128) groups in number of hospitalizations, QoL, ANP levels. No difference in overall event rates (p=0.54).	Underpowered because trial stopped early for low enrollment	CPAP did not extend life, decrease transplant rate in CSA but may be indicated for OSA.
Suppresion CSA by CPAP and transplant- free survival in HF. Arzt, M. 2007 <u>17562959</u> (123)	To investigate whether suppression of CSA below threshold by CPAP would improve LVEF and heart transplant– free survival.	Post-hoc analysis of a randomized trial.	210	Age 18 to 79 y, NYHA II-IV HF due to ischemic, hypertensive, or idiopathic DCM, stabilized with optimal medical therapy for at least 1 month LVEF <40%, Central sleep apnea	Pregnancy, MI, Unstable angina, cardiac surgery within 3 mo of enrollment, OSA	Combined rate of all- cause mortality or heart transplantation	Apnea-hypopnea index (AHI) mean nocturnal SaO2, and LVEF	Despite similar CPAP pressure and hours of use in the 2 groups, CPAP-CSA– suppressed subjects, compared to controls, experienced: A greater increase in LVEF at 3 mo (p=0.001) Significantly better transplant- free survival (HR: 0.37; 95% CI: 0.142-0.967; p=0.043)	Stratification of CPAP-treated pts based on polysomnogram performed 3 mo after randomization. Because suppressed and unsuppressed status could not be ascertained until completion of PSG, events that occurred during the first 3 mo could not be included; more deaths occurred in the pts randomized to CPAP than control (5 vs. 3). The CPAP-CSA–	These results suggest that in HF pts, CPAP may improve both LVEF and heart transplant–free survival if CSA is suppressed soon after it begins.

Effect of continuous positive airway pressure on sleep structure in heart failure pts with central sleep apnea. Ruttanaumpawan, P. 2009 <u>19189783</u> (124)	To determine whether attenuation of CSA by CPAP in pts with HF reduces the frequency of arousals from sleep or improves sleep structure.	RCT 205	Age 18 to 79 y; NYHA II -IV HF due to ischemic, hypertensive, oridiopathic DCM, stabilized on optimal medical therapy \geq 1 mo, LVEF <40% by radionuclide angiography, CSA defined as an AHI \geq 15, with >50% of apneas and hypopneas central in nature	Pregnancy, MI, UA or cardiac surgery within 3 mo of enrollment, obstructive sleep apnea	Apnea-hypopnea index and frequency of arousals.	N/A	In controls, there no change in AHI or frequency of arousals. In CPAP group, AHI decreased significantly but neither the frequency of arousals nor sleep structure changed significantly (p<0.001).	suppressed group was younger, had a lower AHI, and had a slightly lower proportion of central events than the CPAP CSA– unsuppressed group Did not classify arousals as being respiratory or non- respiratory related, and did not examine their timing.	Attenuation of CSA by CPAP does not reduce arousal frequency in HF pts. Arousals not mainly a consequence of CSA and may not have been a defense mechanism to terminate apneas in the same way they do in OSA.
Relationship between beta blocker treatment and the severity of CSA in chronic HF. Tamura, A. 2007 <u>17218566</u> (125)	To examine the relationship between use of beta blockers and the severity of CSA in HF.	Cohort study 45	Chronic HF NYHA II-III LVEF <50%.	Previous cerebrovascular disease, Recent (<6 mo) acute coronary syndrome, chronic respiratory disease	Polysomnography, echocardiography, plasma BNP levels	N/A	Pts receiving beta blockers compared to pts not receiving beta blockers had: lower AHI, lower CAI. Negatively correlated with the dose of carvedilol were: AHI CAI Multiple regression analysis selected no use of beta blockers as an independent factor of CAI. In 5 pts with CAI >5 who underwent serial sleep studies, CAI decreased significantly after 6 mo of treatment with carvedilol.	Small sample size. Did not measure central chemosensitivity to CO2.	In pts with chronic HF, CAI was lower according to the dose of beta blockers. No use of beta blockers was independently associated with CAI. 6 mo of treatment with carvedilol decreased CAI. These results suggest that beta blocker therapy may dose-dependently suppress CSA in pts with chronic HF.
Influence of CRT on different types of SDB. Oldenburg, O. 2007 <u>17467333</u> (126)	To investigate the influence of CRT on SDB in pts with severe HF.	Prospective 77 non- randomized study	Eligible for CRT, present with dyspnea, NYHA III-IV LBBB with QRS ≥150	None specified.	Cardiorespiratory polygraphy. NYHA class, frequency of nycturia,	N/A	CSA was documented in 36 (47%) pts, OSA in 26 (34%), and no SDB in 15 (19%).	Categorization of hemodynamic response based on a novel scoring system	In pts with severe HF eligible for CRT, CSA is common and can be influenced by CRT.

	msec, LVEDD ≥00mm, LVEF of ≤35%, peak VO2 during standardized cardiopulmonary exercise testing, ≤18 ml/kg/min, during initial testing of several LV- lead positions (posterolateral veins), RV-stimulation sites (apex vs. RVOT) and LV vs. biventricular pacing, pulse pressure as a surrogate parameter of haemodynamic acute response had to increase by >10%.	cardiopulmonary exercise, 6-min walk test, and echocardiography parameters.	Sleep disordered parameters improved in CSA pts only: AHI, SaO2min, Desaturation (p< 0.001) Daytime capillary pCO2 was significantly lower in CSA pts compared to those without SDB with a trend towards increase with CRT (p=0.02). After classifying short term clinical and hemodynamic CRT effects, improved SDB parameters in CSA occurred in responders only (p=0.004).	not prospectively validated. Prospectively followed CRT pts without calculating statistical power needed to show results for pts without SDB, those with OSA, or CSA in advance.	Improvement depends on good clinical and hemodynamic response to CRT.
--	---	---	--	--	--

AHI indicates apnea hypopnoea index; ANP, atrial natriuretic peptide; BNP, B-Type natriuretic peptide; CAI, central apnea index; CPAP, continuous positive airway pressure; CRT, cardiac resynchronisation therapy; CSA, central sleep apnea; DM, dilated cardiomyopathy; EF, ejection fraction; HF, heart failure; HTN, hypertension; LBBB, left bundle branch block; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NYHA, New York Heart Association; OSA, obstructive sleep apnea; pts, patients; QoL, quality of life; RV, right ventricular; RVOT, right ventricular outflow tract; SDB, sleep disordered breathing; UA, unstable angina.

Data Supplement 16. Cardiac Rehabilitation-Exercise (Section 7.3.1.6)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Population		Endpoints		Statistical Analysis (Results)	Findings/Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint		

Antiremodeling effect of long- term exercise training in pts with stable chronic HF. Giannuzzi, Pantaleo. 2003 <u>12860904</u> (127)	To determine whether long-term exercise training may influence LV volume and function in a large cohort of pts with stable chronic HF.	RCT	90	HF secondary to idiopathic DCM, IHD or valvular disease LVEF <35% by ECHO. Clinical stability for at least 3 mo under optimized therapy NYHA II-III Peak oxygen uptake (VO2) < 20mL/kg/min at ergospirometry Echocardiographic images of adequate quality for quantitative analysis	Any systemic disease limiting exercise, hypertrophic cardiomyopathy, Valvular disease requiring surgery, Angina pectoris, Sustained ventricular arrhythmias, Severe hypertension, Excess variability >10% at baseline cardiopulmonary exercise test	Cardiopulmonary exercise testing, 6MWT, echocardiography, and QoL.	N/A	Differences from baseline to 6 mo improved in the intervention group for: EF (p<0.001); Work capacity (p<0.001); Peak VO2 (p<0.006); Walking distance (p<0.001); QoL (p<0.01); LV volumes (diminished) (p<0.001); Trend to fewer readmissions for worsening dyspnea (p< 0.05) LV volumes increased in control group (p= 0.05)	In stable chronic HF, long-term moderate exercise training has no detrimental effect on left ventricular volumes and function; rather, it attenuates abnormal remodeling. Furthermore, exercise training is safe and effective in improving exercise tolerance and QoL.
Combined endurance- resistance training vs. endurance training in pts with chronic HF: a prospective randomized study. Beckers, Paul. 2008 <u>18515805</u> (128)	To compare the effects of combined endurance-resistance training with endurance training only on submaximal and maximal exercise capacity, ventilatory prognostic parameters, safety issues, and QoL in pts with chronic HF.	Prospective randomized study	58	Chronic HF due to ischemic or dilated cardiomyopathy LVEF <40% NYHA II-III. Optimal and stable pharmacological treatment	Recent ACS or revascularization in the past 3 mo, actively listed on the transplant list, logistic problems, exercise limited by angina or peripheral arterial occlusive disease, cerebrovascular or musculoskeletal disease preventing exercise training, respiratory limitation	Steady-state workload	VO ₂ peak, ventilatory prognostic parameters, upper and lower limb strength, and QoL	In the combined endurance-resistance training (compared to the endurance training group): SSW increased: p=0.007; Decrease in heart rate at SSW: p=0.002; VO ₂ peak halftime was reduced: p=0.001 Maximal strength in upper limbs increased: p<0.001 HRQoL improved (reported decrease of cardiac symptoms): p= 0.003; 95% CI: 1.11-12.46.	In chronic HF pts, combined endurance- resistance training had a more pronounced effect on submaximal exercise capacity, muscle strength, and quality of life. The absence of unfavorable effects on left ventricular remodelling and outcome parameters is reassuring and might facilitate further implementation of this particular training modality.

Comparison of hospital-based versus home- based exercise training in pts with HF: effects on functional capacity, QoL, psyhcological symptoms, and hemodynamic parameters. Karapolat, Hale. 2009 <u>19641843</u> (129)	To compare the effects of home- based and hospital-based exercise programs on exercise capacity, QoL, psychological symptoms, and hemodynamic parameters in HF pts.	Randomized study	74	Diagnosed with HF for at least 3 mo, HF as a result of ischemic and dilated cardiomyopathy, clinical stability for at least 3 mo, LVEF <40% NYHA II-III, optimal and standard pharmacological treatment, ability to speak and understand Turkish, absence of psychiatric disease, ability to remain stable during exercise tests	Neurological, orthopedic, peripheral vascular, or severe pulmonary disease, NYHA class IV, UA pectoris, poorly controlled or exercise-induced cardiac arrhythmias, recent ACS or revascularization (<3 mo), significant valvular heart disease, AF, uncontrolled arterial HTN, performing exercise training at regular intervals during the previous 6 wk.	Exercise capacity, QoL, psychological symptoms, and hemodynamic parameters	N/A	After the exercise programs, significant improvement was observed in both groups (all p<0.05) including: Peak VO ₂ ; 6MWT; Subscales of physical function, general health, and vitality of short form 36 Beck Depression Inventory LVEF A comparison of the 2 exercise groups revealed no significant differences between them regarding the analyzed variables.	Both the hospital-based and home-based exercise groups improved significantly in functional capacity, QoL, depression symptoms, and LVEF. Based on these results, we believe that physicians can recommend home-based exercise under strict supervision for stable HF pts.
Endurance exercise training in older pts with HF: results from a randomized, controlled, single- blind trial. Brubaker, Peter. 2009 <u>20121952</u> (130)	To determine whether exercise training improves exercise capacity and HRQoL in older persons with HFrEF.	RCT	59	Age <u>></u> 60 y, diagnosed with HfrEF, LVEF <u><</u> 45%	Valvular disease as the primary etiology of HFrEF, recent stroke or MI, uncontrolled HTN, any other condition limiting exercise duration	Exercise performance, LV structure and function, neuroendocrine activation and HRQoL.	N/A	Better in Exercise Training Group: Mean cycle ergometer distance per session (p=0.001) Combined walking & cycling distance (p=0.001) Peak exercise workload (watts) (p=0.007) Exercise time (seconds) on the bike (p=0.002) All other outcome measures did not show significance.	Failed to produce consistent benefits in a cohort or elderly pts with HFrEF that included a significant portion of women. Exercise time and peak workload increased but VO ₂ peak, the primary outcome, did not. Exercise training failed to provide benefits in any of the 4 primary endpoints.

Effects of exercise training on health status in pts with chronic HF. Flynn, Kathryn. 2009 <u>19351942</u> (131)	To test the effects of exercise training on health status among pts with HF.	RCT	2,331	Medically stable, HF outpt, LVEF ≤35%, NYHA II-IV, ability and willingness to undergo exercise training	Unable to exercise, already exercising regularly (>1/wk), had experienced a major CV event in the previous 6 wk	Health status (assessed by the KCCQ)		At 3 mo the KCCQ overall summary score improved by a greater degree in the exercise training group (p< 0.001; 95% CI: 0.84-3.01) At 3 mo there were no further significant changes in KCCQ score for either group (p= 0.85), resulting in sustained, greater improvement overall for the exercise group (p< 0.001). Changes from baseline to 12 mo in the KCCQ overall summary score were associated with changes in exercise time: Cardiopulmonary exercise test: (r=0.28; p< 0.001) Peak O2 consumption: (r=0.21; p< 0.001) 6-min walk distance (r=0.18; p<0.001) Based on these relationships, a 49.7-m change in distance walked corresponds to an individual's change of 5 points on the KCCQ overall summary score.	Exercise training conferred modest but statistically significant improvements in self- reported health status compared with usual care without training. Improvements occurred early and persisted over time.
Resistance training increases 6-min walk distance in people with chronic HF: a systematic review. Hwang, Chueh-Lung. 2010 20482475 (132)	To determine if resistance training improves heart function, exercise capacity and QoL in people with chronic HF more than no intervention or usual care.	Systematic review with meta- analysis of randomized trials	241 pts from 8 trials	Adults with chronic HF Diagnosis based on clinical signs or LVEF <40%	None specified	Cardiac function, exercise capacity, QoL.	N/A	Resistance training significantly increased 6-min walk distance: WMD: 52m; 95% CI: 19-85	Resistance training increased 6-min walk distance compared to no training, but had no other benefits on cardiac function, exercise capacity, or QoL if used along or as an adjunct to aerobic training in people with chronic HF.

A randomized trial of the addition of home- based exercise to specialist HF nurse care: the Birmingham Rehabilitation Uptake Maximization study for pts with CHF (BRUM- CHF) study. Jolly, Kate. 2009 <u>19168520</u> (133)	To assess the effectiveness of a home-based exercise program in addition to specialist HF nurse care.	RCT	169	LVEF <40% on ECHO; had a severity of at least NYHA II in the previous 24 mo; clinically stable for 4 wk; in receipt of optimal medical treatment and in the care of a specialist HF nurse team from 2 acute hospital trusts and 1 primary care trust in the West-Midlands region, UK; not considered high-risk for a home-based exercise program.	NYHA IV MI; revascularization within the past 4 mo; hypotension; UA; ventricular or symptomatic arrhythmias; obstructive aortic valvular disease; COPD; hypertrophic obstructive cardiomyopathy; severe musculoskeletal problems preventing exercise; case-note reported dementia; current severe psychiatric disorder	Disease-specific QoL measured by the MLHFQ	Composite outcome of death or admission with HF or myocardial infarction. Psychological wellbeing, self- reported physical activity, blood pressure, generic HRQoL, and health care utilization.	At 6 mo, there was no between-group difference in the disease-specific QoL MLHFQ (95% CI: -7.87-2.80) At 12 mo, there was no between-group difference in the disease-specific QoL MLHFQ (95% CI: -5.87-4.76) The only secondary outcomes significant for exercise group: Higher generic QoL scores at 6 mo (95% CI: 0.04-0.18) Lower hospital anxiety and depression scale score at 12 mo (95% CI: -2.00 - 0.14) At 6 mo, the control group showed deterioration in physical activity, exercise capacity and generic QoL.	This study failed to demonstrate a benefit from the addition of a home-based exercise program in a community- based HF population. Further evidence is needed to assess the suitability of home-based exercise programs in this population.
Exercise training in older pts with HF and preserved EF. Kitzman, Dalane. 2010 <u>20852060 (</u> 134)	To test the hypothesis that supervised exercise training in older pts with HFpEF would improve the primary outcome of peak exercise VO ₂ and the secondary outcome of disease-specific QoL.	RCT	53	Stable with no medication changes for >6 wk; HFpEF defined as history, symptoms and signs of HF Preserved LVEF (≥50%); no evidence of significant coronary, valvular or pulmonary disease or any other medical condition that could mimic HF symptoms.	Contraindication to exercise testing or training; unable to perform a valid baseline exercise test; currently exercising regularly; had known cancer; significant renal dysfunction; substance abuse; uncontrolled diabetes; dementia, History of noncompliance; any other disorder that would preclude participation in the intervention and follow-up.	Peak exercise oxygen uptake	QoL; LV morphology and function, and neuroendocrine function	Peak exercise oxygen uptake increased significantly in the exercise treatment group compared to the control group (p= 0.0002). There were significant improvements in peak power output, exercise time, 6- minute walk distance, and ventilatory anaerobic threshold (all p< 0.002). There was improvement in the physical quality of life score (but not in the total score) (p= 0.03).	This randomized, controlled, single-blind study showed that 16 wk of exercise training was safe and significantly improved peak and submaximal exercise performance in older pts with HFpEF. These results suggest that this nonpharmacological intervention may be a worthwhile consideration for pts with this common and increasingly prevalent disorder.

Effects of exercise training in pts with HF: the exercise rehabilitation trial (EXERT). McKelvie, Robert. 2002 <u>12094184</u> (135)	To examine the effects of exercise training on functional capacity in pts with HF.	RCI	181	Documented clinical signs and symptoms of HF LVEF <40%, NYHA I-III, 6MWT distance <500 meters	Inability to attend regular exercise training sessions; exercise testing limited by angina or leg claudication; abnormal blood pressure response to exercise testing; cerebrovascular or musculoskeletal disease preventing exercise testing or training; respiratory limitation; poorly controlled cardiac arrhythmias; any noncardiac condition affecting regular exercise training or decreasing survival.	6MW1	Peak oxygen uptake, dynamic muscle strength, QoL, and cardiac function	Significant increase in 6-min walk distance at 3 and 12 mo (p= 0.026) but no between-group differences (p= 0.081). Incremental peak oxygen uptake increased in the exercise group compared with control group: At 3 mo: (p=0.014); At 12 mo: (p=0.014) At 3 mo, compared with the control group, increases were seen in exercise group for: Arm Curl and Knee Extension: (p=0.014) No significant changes observed in cardiac function or QoL.	Exercise training improves peak oxygen uptake and strength during supervised training. Over the final 9 mo of the study, there was little further improvement, suggesting that some supervision is required for these pts. There were no adverse effects on cardiac function or clinical events.
--	--	-----	-----	--	--	------	--	---	---

Combined endurance and muscle strength training in female and male pts with chronic HF. Miche, Eckart. 2008 <u>18432395</u> (136)	To evaluate the effect of a combined endurance and muscle strength training program on clinical performance data and health- related psychosocial factors in women and men.	Non- randomized study of men vs. women.	285	Stable chronic HF; LVEF <45%; Peak VO2 <20 ml/min/kg; capable of answering questions on HRQoL and psychological well-being.	Severe pulmonary disorders; neurological deficits; cognitive disorders and physical disabilities which prevented pts from participating in a training program.	LVEF, cardiopulmonary performance, QoL	N/A	Women had a diagnosis of non-IHD and valvular heart disease more commonly than men. LVEF increased: Female: p<0.001 LVEDV decreased: Female: p<0.05 Male: p<0.05 LVESV: Female: p<0.001 Peak VO2: Female: p<0.001 Peak VO2: Female: p<0.001 Wattmax (W): Female: p<0.001 Wattmax (W): Female: p<0.001 Male: p<0.001 Male: p<0.001 Muscle strength training: Female: p<0.001 Muscle strength training: Female: p<0.001 Muscle strength training: Female: p<0.001 Male: p<0.001 Physical Health: Female: p<0.001 Mental Health: Female: p<0.01 Mental Health: Female: p<0.05	The results of our study confirm the feasibility of a combined endurance and resistance program, especially for women. Our findings show a considerably reduced cardiopulmonary performance, negatively affecting physical health. In contrast, no essential restrictions were reported by our groups regarding mental health. This underlines the importance of a physical training program and its continuation at home following the hospital stay in order to influence performance data favorably.
---	--	--	-----	--	---	--	-----	--	--

Long-term effects of a group-based high-intensity aerobic interval- training program in pts with chronic HF. Nilsson, Birgitta. 2008 <u>18940296 (</u> 137)	To evaluate the long- term effects of a 4- mo, group-based, high-intensity aerobic interval training program on functional capacity and the QoL in pts with chronic HF.	RCT	80	Stable chronic HF; NYHA II-IIIB; receiving optimal medical treatment; LVEF <40% or ≥40% with clinical symptoms of diastolic HF	Acute MI within 4 wk; UA pectoris; serious rhythm disturbance; symptomatic peripheral vascular disease; severe obstructive pulmonary disease; 6MWT <550 m; workload on the cycle ergometer test >110 W; significant comorbidities that would prevent study entry due to terminal disease or an inability to exercise In a long-term care establishment	Functional capacity, evaluated by 6-min walking distance.	QoL	After 4 mo, in the exercise group: Functional capacity improved (p<0.001), QoL improved (p<0.001). After 12 mo, in the exercise group: Functional capacity still improved (p<0.001). QoL still improved (p=0.003).	The results support the implementation of a group-based aerobic interval training program to improve long-term effects on functional capacity and the QoL in pts with chronic HF.
Efficacy and safety of exercise training in pts with chronic HF. O'Connor, Christopher. 2009 <u>19351941</u> (138)	To test the efficacy and safety of exercise training among pts with HF.	RCT	2331	HF LVEF <u>≤</u> 35%, NYHA II-IV,despite optimal HF therapy for at least 6 wk	Major comorbidities or limitations that could interfere with exercise training, recent or planned major CV events or procedures, performance of regular exercise training, use of devices that limited the ability to achieve target heart rates.	Composite of all- cause mortality or all- cause hospitalization.	All-cause mortality, the composite of CV mortality or CV hospitalization, and the composite of CV mortality or HF hospitalization.	NS reductions in primary or secondary endpoints. In prespecificed supplementary analyses adjusting for highly prognostic baseline characteristics there were reductions in the exercise training group for: All-cause mortality or hospitalization: (p=0.03; 95% CI: 0.81-0.99) CV mortality or HF hospitalization: (p=0.03; 95% CI: 0.74-0.99)	Regular exercise training in pts with systolic HF was safe. In the protocol- specified primary analysis, exercise training resulted in nonsignificant reductions in the primary endpoint of all-cause mortality or hospitalization and in secondary endpoints. After adjustment for highly prognostic predictors of the primary endpoint, exercise training was associated with modest significant reductions for both all- cause mortality or hospitalization and CV mortality or HF hospitalization.

Exercise training meta-analysis of trials in pts with chronic HF (ExTraMATCH). Piepoli. 2004 <u>14729656</u> (139)	To determine the effect of exercise training on survival in pts with HF due to LV systolic dysfunction.	Collaborativ e meta- analysis	801 pts from 9 trials	Randomized parallel group controlled trials, evaluate exercise training without any other simultaneous intervention, study pts with stable HF (3 mo or more of stability) due to left systolic ventricular dysfunction (LVEF <50%), have an exercise program lasting 8 wks or more, utilize training involving at least both legs, have survival follow up of ≥3 mo.	Trials of arm or single leg training were excluded	Time to death.	Death or time to admission to hospital.	Exercise training significantly reduce mortality (p=0.0015; 95% CI: 0.46-0.92) Exercise training significantly reduced death or admission to hospital (p=0.01 95% CI: 0.56-0.93).	Meta-analysis of randomized trials gives no evidence that properly supervised medical training programs for pts with HF might be dangerous, and indeed there is clear evidence of an overall reduction in mortality.
Randomized trial of progressive resistance training to counteract the myopathy of chronic HF. Pu, Charles. 2001 <u>11356801</u> (140)	To evaluate whether strength training in elderly pts with chronic HF would be well tolerated and result in improved overall exercise performance without changes in central cardiac function.	RCT	96 (16 HF 80 control)	Community-dwelling, female, age ≥65 mild to moderate, stable systolic HF, NYHA I-III, resting LVEF ≤45%	NYHA class IV, MI within 6 mo, hospitalization for chronic HF within 2 mo, change of HF therapy within 1 mo, UA pectoris, fixed ventricular rate pacemaker, abdominal aortic aneurysm >4 cm, major limb amputation, symptomatic abdominal or inguinal hernias Folstein mini-mental state examination score <23, significant abnormalities on maximal treadmill testing or screening strength testing	Overall exercise capacity (6-min walk distance) and muscle function.	Muscle metabolism and histology, body composition, maximal oxygen consumption, and cardiac function,	Women with chronic HF had significantly lower muscle strength than women without chronic HF (p<0.0001). In resistance trainers (vs. controls): Strength improved (p<0.0001); Muscle endurance improved (p<0.0001); 6-minute walk distance increased (p<0.0003). Increases in type 1 fiber area and citrate synthase activity in skeletal muscle were independently predictive of improved 6-min walk distance (r ² = 0.78; p=0.0024).	High-intensity progressive resistance training improves impaired skeletal muscle characteristics and overall exercise performance in older women with chronic HF. These gains are largely explained by skeletal muscle and not resting cardiac adaptations.

The effects of physical training on workload, upper leg muscle function and muscle areas in pts with chronic HF. Senden, Jeff. 2005 <u>15823638 (</u> 141)	To investigate the effect of physical training on upper leg muscle area, muscle strength and muscle endurance expressed as upper leg muscle function in relation to exercise performance.	RCT	77	Chronic HF for at least 6 mo, NYHA II-III, clinically stable for at least 3 mo, received optimal medical therapy, physically able to visit the outpt clinic, LVEF <35%	Interfering disease such as COPD, fasting glucose <7.0 mmol/L (DM), neuromuscular disorders, HTN	LVEF, body composition, daily physical activity, exercise performance, upper leg muscle area and isokinetic leg muscle variables.	N/A	 Workload and peak oxygen consumption decreased in the control group and increased in the training group (p<0.05). Hamstrings area decreased in the control group and did not change in the training group (p<0.05). Upper leg muscle function improved in the training group and did not change in the control group (p<0.05). At baseline and after intervention nearly 60% of the variance in maximal workload was explained by upper leg muscle function and quadriceps muscle area. 	In chronic HF pts, home- based training in conjunction with a supervised strength and endurance training program is safe, feasible and effective and does not require complex training equipment. Physical training prevented loss of hamstrings muscle mass and improved exercise performance by enhancing muscle strength and endurance.
Antiremodeling effect of long- term exercise training in pts with stable chronic HF. Giannuzzi, Pantaleo. 2003 <u>12860904</u> (127)	To determine whether long-term exercise training may influence LV volume and function in a large cohort of pts with stable CHF.	RCT	90	HF secondary to idiopathic DCM, IHD or valvular disease, LVEF <35% by ECHO, clinical stability for at least 3 mo under optimized therapy, NYHA II-III, peak oxygen uptake (VO ₂) <20mL/kg/min at ergospirometry, echocardiographic images of adequate quality for quantitative analysis	Any systemic disease limiting exercise, hypertrophic cardiomyopathy, valvular disease requiring surgery, angina pectoris, sustained ventricular arrhythmias, severe HTN, excess variability >10% at baseline cardiopulmonary exercise test	Cardiopulmonary exercise testing, 6MWT, ECHO, and QoL.	N/A	Differences from baseline to 6 mo improved in the intervention group for: EF (p<0.001), Work capacity (p<0.001), Peak VO ₂ (p<0.006), Walking distance (p<0.001), QoL (p<0.01), LV volumes (diminished) (p<0.006), Trend to fewer readmissions for worsening dyspnea (EDV p<0.05 ESV) LV volumes increased in control group (p<0.0.01 EDV ESV)	In stable chronic HF, long-term moderate exercise training has no detrimental effect on LV volumes and function; rather, it attenuates abnormal remodeling. Furthermore, exercise training is safe and effective in improving exercise tolerance and QoL.

Exercise training reduces circulating adiponectin levels in pts with chronic HF. Van Berendoncks, An. 2010 <u>19656085</u> (142)	To assess circulating adiponectin concentrations in chronic HF pts, compare with controls, and evaluate the effects of a 4-mo exercise training program.	Prospective, non- randomized trial	80	LVEF <30%, NYHA II-III, symptoms had been stable on medical treatment for at least 1 mo prior to inclusion	Recent ACS or revascularization, valvular disease requiring surgery, exercise-induced myocardial ischemia or malignant ventricular arrhythmia, acute myocarditis or pericarditis, cerebrovascular or musculoskeletal disease preventing exercise testing or training, acute or chronic infections, allergies, cancer or inflammatory disease, DM.	Circulating adiponectin concentrations, exercise capacity, anthropometric data and NT-proBNP levels.	N/A	At baseline, adiponectin levels were significantly higher in chronic HF pts compared with healthy subjects (p=0.015). At baseline, stratification of pts according to tertiles of NT-proBNP revealed an increase in adiponectin with disease severity (p<0.001). Exercise training significantly reduced circulating adiponectin levels in the trained chronic HF group (compared to sedentary chronic HF group) (p=0.008)	Circulating adiponectin concentrations are higher in chronic HF pts compared with healthy subjects and increase with disease severity. Exercise training for 4 mo lowers circulating adiponectin levels. The present findings, together with those from other studies, suggest that dysregulation of the adiponectin pathway contributes to the observed metabolic impairment in chronic HF
Effects of exercise training on cardiac performance, exercise capacity and QoL in pts with HF. Van Tol, Benno. 2006 <u>16713337</u> (143)	To determine the effect of exercise training in pts with chronic HF on cardiac performance, exercise capacity and HRQoL.	Meta- analysis of RCTs	35 trials	RCTs, included pts with chronic HF in the control and in the intervention group (diagnosis based on clinical findings or LVEF <40%), included at least 1 treatment group receiving exercise training and 1 control group which received standard medical treatment w/o additional exercise training, evaluated outcome measures in terms of cardiac performance, exercise capacity and/or HRQoL, exercise training had to include at least one of the following training modalities: walking, cycling or resistive training of peripheral muscles.	Studies in which only respiratory muscles or one isolated muscle group was trained.	Cardiac performance, exercise capacity and HRQoL.	N/A	During maximal exercise, significant summary effect sizes were found for: SBP (p=0.03), Heart rate (p=0.011), Cardiac output (p=0.004), Peak oxygen uptake (p=0.00), Anaerobic threshold (p=0.00), 6MWT (p=0.00). The MLHFQ improved by an average of 9.7 points (p=0.00).	Exercise training has clinically important effects on exercise capacity and health- related quality of life, and may have small positive effects on cardiac performance during exercise.

6MWT indicates 6 minute walk test; ACS acute coronary syndrome; AF, atrial fibrillation; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CV, cardiovascular; DCM, dilated cardiomyopathy; DM, diabetes mellitus; ECHO, echocardiography; EF, ejection fraction; EXERT, Exercise Rehabilitation Trial; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HRQoL, health related quality of life; HTN,

hypertension; IHD, ischemic heart disease; KCCQ, Kansas City Cardiomyopathy Questionnaire; LV, left ventricular; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; MI, myocardial infarction; MLHFQ, Minnesota Living with Heart Failure Questionaire; N/A, not applicatble; NT-proBNP, N-terminal pro-B-Type natriuretic peptide; N/A, not applicable; NS, not significant; O2, oygen; pt, patient; QoL, quality of life; r², coefficient of determination; RCT, randomized control trial; SSW, Stead-state workload; UA, unstable angina; UK, United Kingdom; and VO2, oxygen volume.

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Pa	atient Population	Endpoint	ts	Statistical Analysis (Results)	Study Limitations	Findings/ Comments
Diuretic studies				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
DOSE-AHF, Felker, 2011 <u>21366472</u> (144)	To compare high and low doses of diuretics administered over longer and shorter periods of time to determine the safest and most effective combination.	RCT	308	Prior clinical diagnosis of HF that was treated with daily oral loop diuretics for at least 1 mo; current diagnosis of HF, as defined by the presence of at least 1 symptom (dyspnea, orthopnea, or edema) and 1 sign (rales on auscultation, peripheral edema, ascites, pulmonary vascular congestion on chest radiography); daily oral dose of furosemide 80 mg- 240 mg (or equivalent); identified within 24 h of hospital admission; current treatment plan includes IV loop diuretics for at least 48 h	BNP <250 mg/mL or NT-proBNP <1000 mg/mL; IV vasoactive treatment or ultrafiltration therapy since initial presentation; treatment plan includes IV vasoactive treatment or ultra-filtration; substantial diuretic response to prerandomization diuretic dosing such that higher doses of diuretics would be medically inadvisable; SBP <90 mm Hg; SCr >3.0 mg/dL at baseline or currently undergoing renal replacement therapy; hemodynamically significant arrhythmias; ACS within 4 wk prior to study entry; active myocarditis; hypertrophic obstructive cardiomyopathy; severe stenotic valvular disease; restrictive or constrictive cardiomyopathy; complex congenital heart disease; constrictive pericarditis;. non- cardiac pulmonary edema; clinical evidence of digoxin toxicity; need for mechanical hemodynamic support; sepsis; terminal illness (other than HF) with expected survival time of <1 y; history of adverse reaction to the study drugs; use of IV iodinated radiocontrast material within 72 h prior to study entry or planned during hospitalization; enrollment	Pt well-being, as determined by VAS; change in SCr	Weight loss; Proportion of pt free of congestion; change in the bivariate relationship of creatinine vs. weight loss; dyspnea, as determined by VAS; pt global assessment, as determined by VAS; change in SCr; Change in SCr; Change in SCr; Change in SCr; Change in cystatin C; worsening or persistent HF, defined as a need for rescue therapy; development of cardio-renal syndrome, defined as an increase in the SCr level >0.3 mg/dL; net fluid loss; time from study entry to discharge during index hospitalization; death or total days hospitalized for	Comparison of bolus vs. continuous infusion: no significant difference in either pts' global assessment of symptoms (mean AUC, 4236 ± 1440 in the bolus vs 4373 ± 1404 in the infusion group, p=0.47) Mean change in creatinine level (0.05 ± 0.3 mg/dL in the bolus vs 0.07 ± 0.3 mg/dL in the bolus vs 0.07 ± 0.3 mg/dL in the infusion group, p=0.45) Secondary Endpoints: No significant differences, including SCr and cystatin C levels during index hospitalization and at 60 d. Comparison of high-dose vs. low-dose strategy: no significant difference in pts' global assessment of symptoms, although there was a nonsignificant trend toward greater improvement in the high-dose group (mean AUC, 4430 ± 1401 vs. 4171 ± 1436 ; p=0.06; mean change in creatinine level (0.08 ± 0.3 mg/dL with the high-dose strategy and 0.04 ± 0.3 mg/dL with the low-dose strategy was associated with greater diuresis (net fluid loss and weight loss) and greater relief from dyspnea but also with transient worsening of renal function (occured in 23% of pts in the high-dose vs 14% in the low-dose group, p=0.04)	N/A	N/A

Data Supplement 17. Diuretics Versus Ultrafiltration in Acute Decompensated HF (Section 7.3.2.1)

					or planned enrollment in another		HF; death or re-	Clinical composite endpoint of death.	, 	
					clinical trial during hospitalization:		hospitalization	rehospitalization. or ED visit during the		
					inability to comply with planned			60-d follow-up period: HR with	1	
					study procedures			continuous infusion: 1 15: 95% CI: 0 83-	1	
								1.60: n=0.41 HR with high-dose	1	
								strategy 0.83: 95% CI: 0.60-1.16	1	
								n=0.28	1	
DDOTECT	Polofullino, on	DOT	2 022	Dereistant dyannaa	Dreamant or broast feeding: equite	Drimony and paint was	Two cocondony	P-0.20 Relefuling did not provide a banofit with	Doot hoo	Dolofullino did
Maggie 2010	Roioryilline, an	RUI	2,033	et root or with	Pregnant of breast record, acute	treatment success		reapport to the primary and point (OD:	PUSLINC coloction of the	Roioryiine ulu
	adenosine An-receptor					treatment feilure or no	outcomes were			four the affect
<u>20925544</u>	antagonist, would			minimal activity,	sepsis, serum potassium	treatment failure, or no	prespecified: death	0.92, 95% CI: 0.78-1.09, p=0.35).	Dest of 3 dose	tavorable effect
(145)	improve dyspnea,			impaired renai	<3.5mEq/L; ongoing or planned IV	change in the pt's condition.	from any cause or	Persistent renai impairment developed	groups from the	with respect to
	reduce the risk of			function (an	therapy for acute HF with positive	Success defined as pt-	rehospitalization	in 15% of pts in the rolotylline group and	pilot trial with	the primary
	WRF, and lead to a			estimated CrCl of	inotropic agents, vasopressors,	reported moderate or	for cardiovascular	in 13.7% of pts in the placebo group	multiple small	clinical
	more favorable clinical			20-80 mL/min with	vasodilators, or mechanical	marked improvement in	or renal causes	(OR: 1.11; 95% CI: 0.85-1.46; p=0.44).	treatment groups	composite end
	course in pt with acute			the use of the	support, with the exception of IV	dyspnea both 24 and 48 h	through d 60 and	By 60 d, death or readmission for	carries the risk	point, nor did it
	HF			Cockcroft-Gault	nitrates, BNP<500; ongoing or	after administration of the	the proportion of	cardiovascular or renal causes had	that an apparent	improve renal
				equation), a BNP	planned UF, hemofiltration or	study drug, in the absence	pts with persistent	occurred in similar proportions of pts	superiority may	function or 60-
				level of ≥500	dialysis; severe pulmonary	of any criterion for failure.	renal impairment,	assigned to rolofylline, 386 of 1356 pts	be the play of	d outcomes. It
				pg/mL or more or	disease; significant stenotic	Failure defined as the	defined as an	(Kaplan–Meier estimate, 30.7%; 95%	chance and may	does not show
				an NT-pBNP level	valvular disease, heart transplant	occurrence of any of the	increase in the SCr	CI: 27.8-33.6) as compared with 195 of	have resulted in	promise in the
				≥2000 pg/mL,	recipient or admitted for cardiac	following: death or	level ≥0.3 mg/dL	677 pts assigned to placebo (Kaplan–	the inability to	treatment of
				ongoing IV loop-	transplantation	readmission for HF through	by d 7, confirmed	Meier estimate: 31.9%; 95% CI: 27.4-	replicate pilot	acute HF with
				diuretic therapy,		d 7, worsening symptoms	at d 14; the	36.4) (HR: 0.98; 95% CI: 0.83-1.17;	study findings in	renal
				and enrollment		and signs of HF occurring	initiation of	p=0.86). AE rates were similar overall;	this more	dysfunction
				within 24 h after		>24 h after the initiation of	hemofiltration or	however, only pts in the rolofylline group	definitive, larger	
				admission.		the study drug requiring	dialvsis through d	had seizures, a known potential adverse	study, Also,	
						intervention by d 7 or	7: or death by d 7.	effect of A1-receptor antagonists1.	clinical relevance	
						discharge (if earlier) or	.,		of endpoints has	
						persistent WRF defined as			been questioned	
						an increase in the SCr level			boon quoononou	
						>0.3 mg/dL (26.5 µmolL)			1	
						from randomization to d 7			1	
						confirmed at d 14 or the			1	
						initiation of homofiltration or			1	
						dialygic during the period			1	
						transistication of the study			1	
						drug through d 7. Dtrug			1	
						arug through a 7. Pts Were			1	
						classified as naving			1	
						unchanged treatment status			1	
						it they met neither the			1	
						criteria for treatment			1	
						success nor the criteria for			1	
						treatment failure.			1	
									,	

DAD-HF,	Evaluate the effect of	RCT	60	Age >18 y; history	Acute de novo HF; severe renal	Incidence of WRF during	Changes in SCr,	Mean hourly excreted urine volume	Relatively small	This study
Giamouzis,	low-dose dopamine			of HF;	failure (admission SCr >215	the first 24 h from	urea, potassium,	(272±149mL in high-dose furosemide	study, 2 groups	shows that
2010	and furosemide on			deterioration of HF,	mmol/L [2.5 mg/dL] or eGFR <30	randomization. 2	and eGFR during	vs 278±186mL in LDFD plus low-dose	did not receive	LDFD infusions
<u>21111980</u>	diuresis and renal			symptoms of	mL min 1 1.73 m ²); admission SBP	definitions were used for	the first 24 h from	dopamine group; p=.965) and changes	the same dose of	are as effective
(146)	function in pts with			recent onset (<6	<90 mm Hg; severe valvular	WRF: 1) >0.3 mg/dL rise in	randomization;	in dyspnea score (Borg index: 4.4±2.1	furosemide and	as high-dose
	acute decompensated			h), dyspnea at	disease; known adverse reactions	SCr level from baseline to	incidence of WRF	in high-dose furosemide group vs	did not include a	furosemide
	HF			rest, orthopnea,	to furosemide or dopamine; HF	24 h; and 2) >20%	over the course of	4.7±2.0 in LDFD group; p=.575) during	low-dose	infusions in
				and paroxysmal	secondary to congenital heart	decrease in eGFR from	hospitalization;	the 8 h of protocol treatment were	furosemide only	terms of clinical
				nocturnal dyspnea,	disease; a scheduled procedure	baseline to 24 h	total length of stay;	similar in the two groups. WRF was	group.	and diuretic
				accompanied by	with a need for IV contrast dye in		and 60-d mortality	more frequent in the high-dose		response in pts
				signs of	the present hospitalization; and a		or rehospitalization	furosemide (n=9; 30%) than in the		hospitalized for
				congestion (third	scheduled cardiac surgery within 2		rate (all-cause,	LDFD group (n=2; 6.7%; p=.042).		acute
				heart sound,	mo.		cardiovascular,	Serum potassium changed from		decompensate
				jugular venous			and worsening of	4.3±0.5 to 3.9±0.4mEq/L at 24 h		d HF.
				distension,			HF).	(p=.003) in the high-dose furosemide		Moreover,
				pulmonary rales)				group and from4.4±0.5 to		LDFD infusion
				on physical				4.2 ± 0.5 mEq/L at 24 hours (p=.07) in the		was associated
				examination; levels				LDFD group. Length of stay and 60-d		with
				of serum BNP				mortality or rehospitalization rates (all-		significantly
				>400 pg/mL or NI				cause, cardiovascular, and worsening		lower rates of
				pBNP >1,500				HF).		WRF than
				pg/mL; and oxygen						high-dose
				saturation <90%						furosemide,
				on admission.						suggesting a
										renoprotective
										effect in this pt
										population.

Pilot continuous vs bolus infusion (Duke), L Allen, 2010 <u>20538132</u> (147)	Pilot study of furosemide by continuous infusion vs twice-d bolus injection. Hypothesis that continuous dosing of IV furosemide provides gradual diuresis with less neurohormonal activation, which would manifest as less renal dysfunction, compared to bolus dosing in the treatment of acute decompensated HF with volume overload	RCT	41	Primary diagnosis of acute decompensated HF; evidence of volume overload; could be randomized <24 h from hospital presentation	End-stage renal disease or anticipated need for renal replacement therapy; were not expected to survive hospitalization; pregnant	Change in SCr from admission to hospital d 3 or hospital discharge	Cumulative urine output and other electrolyte changes from admission to hospital d 3 as well as hospital length of stay	None of the outcomes showed a statistically significant difference between bolus and continuous dosing from admission to hospital d 3. Nonsignificant trend toward improvement in the bolus dosing arm. Decreases in serum potassium, serum sodium, and SBP showed nonsignificant trends in favor of continuous infusion	Smaller study	No statistically significant differences noted between bolus and continuous infusion
Pilot continuous vs bolus infusion (MUSC), Thomson, 2010 <u>20206891</u> (148)	Pilot study comparing the effectiveness of continuous IV with intermittent IV infusion of furosemide in pt with acute decompensated HF	RCT	56	Admission diagnosis of acute decompensated HF	Pts who had received >2 doses of IV fruosemide before randomization	Net daily urine output	Net daily urine output normalized for amount of furosemide received, total daily urine output normalized for amount of furosemide received, weight loss during the study, need for additional HF therapy, duration of study drug dministration, length of hospitalization	Mean urine output in 24 h was 2,098±1,132 mL in pt receiving continuous vs 1,575±1100 mL in the bolus group (p=0.086). Total urine output was 3726±1121 mL/24 h in the continuous group vs 2,955±1,267 mL/24 h in bolus group (p=0.019). Length of hospital stay was 6.9±3.7 d in the continuous group vs 10.9±8.3 d in the bolus group (p=0.006)	Smaller study	LOS shorter and mean urine output greater in the continuous infusion group vs bolus group
ADHERE, Peacock,	To determine the clinical and renal	Registry	82,540	Pts in the ADHERE registry	Pts receiving vasoactive drugs or dialysis. Those who received	Increase from baseline to last available SCr > 0.5	Inhospital mortality, ICU	Both before and after risk and propensity adjustments, an increase in	ADHERE registry data were	Among pts in the ADHERE
2008	outcomes associated			who received IV	multiple types of diuretics. Pts with	mg/dL;	admission, ICU	SCr >0.5 mg/dL occurred less	retrospective and	registry, After
<u>18480204</u>	with lower vs higher IV			diuretics during a	SCr values >6 mg/dL or	decrease in GFR >10	LOS >3 d, and	frequently in LDD admissions than in	observational so	covariate and
(149)	loop diuretic dose in			hospitalization for	hospitalizations with LOS <4 h	mL/min from baseline to	hospital LOS >4 d	HDD admissions (both p<0.0001). The	should be	propensity
	pts hospitalized with			acute	were excluded from the analysis of	discharge; initiation of		prevalence of a >10 mL/min decrease in	regarded as	adjustments,
	acute decompensated			decompensated	change in SCr and dialysis	dialysis during		GFR from baseline to discharge was	hypothesis	the inhospital

	HF. This study analyzed data from the ADHERE registry to look at the impact of diuretic dosing. 62,866 pt receiving <160 mg and 19,674 pts ≥160 mg of furosemide were analyzed.			HF.	initiation. Pt with SCr values >6 mg/dL, GFR values >200 mL/min, or hospitalizations with LOS <24 h were excluded from the analysis of change in GFR.	hospitalization.		significantly lower in LDD vs HDD admissions (p <0.0001). Significant differences between cohorts present after risk and propensity adjustments. LDD treatment was associated with lower prevalence of prolonged ICU LOS (nonsignificant differences). After covariate and propensity adjustments: in-hospital mortality risk of LDD was significantly lower compared to HDD. AUC for adjusted model was 0.78. Unadjusted mortality OR 0.875; 95% CI: 0.787–0.973; p =0.01. After adjustment for covariates known to be associated with mortality – age, BUN, SBP, DBP, sodium, creatinine, heart rate and dyspnea at rest – adjusted OR was 0.888: 95% CI: 0.795– 0.993; p =0.0364	generating. Clinical reasons for initiation of IV diuretics was not collected and therefore not considered in analysis.	mortality risk of pts who received LDD was significantly lower compared to those receiving HDD.
Cohort study high vs. low dose (Brigham and Women's) Mielniczuk, 2008 <u>18514930</u> (150)	This study was a prospective observational analysis of pts in an advanced HF clinic stratified at baseline by diuretic dose (low dose ≤80 mg, high dose >80 mg furosemide equivalent) to evaluate the effect of high/low (or no) diuretic doses on outcomes.	Cohort	183	Eligible pts had to have a primary diagnosis of chronic HF and be followed by a specialist in a tertiary care HF clinic. Pts with either preserved or reduced systolic function were included	Pts were excluded if they required renal replacement therapy, had a concurrent noncardiac diagnosis expected to limit life expectancy to less than 1 y, or were unable to participate in repeat clinical assessments	All pts were followed for 1 y. The primary outcome for the analysis was time to first HF event of HF admission, cardiac transplant, MCS, or death	Secondary outcomes included individual components of the HF composite and WRF, which was defined as an increase in SCr >0.3 mg/dL from baseline	Compared with pts taking LDD (113 pts [62%]), pts taking HDD (70 pts[38%]) had more markers of increased cardiovascular risk (older, ischemic cardiomyopathy, DM and HTN) and were more likely to have a history of recent instability (33% vs 4.4% in low dose, p<.001). SCr significantly higher in pts receiving HDD vs. LDD (1.4 ± 0.5 mg/dL vs 1.1 ± 0.5 mg/dL, respectively, p < .001). 1 y cumulative HF event rates significantly greater in pts taking HDD when to low-dose/no diuretics (HF composite, 29% vs 4.5%, p<.01; HF hospitalization, 26% vs 4.5%, p<.01; MCS or transplant, 7.1% vs 2.7%, P = .02; death, 2.9% vs 0.9%, p= .4; high vs low dose for all). Among pts taking HDD, those with a history of instability had significantly greater HF event rates during a 1-y period compared with pts with recent	Smaller study, observational, single-center	HDD may be more of a marker than a cause of instability. A history of HF stability during the past 6 mo is associated with an 80% lower risk of an HF event during the next y, independently of baseline diuretic dose.

								clinical stability (HF composite, 47% vs		
								18% $p = 0.13$) Independently of divietic		
								dose nts with a history of clinical		
								stability had an 80% lower risk of		
								developing an HE event HDD were a		
								strong univariate predictor of		
								subsequent HE events (HR: 3.83, 95%		
								Cl: 1.82-8.54); however, after		
								adjustment for clinical stability, diuretic		
								dose no longer remained significant		
								(HR: 1.53, 95% CI: 0.58-4.03).		
PROTECT	Pilot study was	RCT	301	Hospitalized for	SBP <95 or >160 mm Hg; fever	The prespecified primary	Composite of	Pts treated with rolofylline more likely to	Limited by the	The
pilot, Cotter,	designed to identify an			acute HF with an	>38°C; acute contrast-induced	analysis for this pilot phase	death or all-cause	achieve success, as evidenced by	study size and	preservation of
2008	efficacious dose while			estimated CrCl of	nephropathy; resistant	was a trichotomous	readmission within	improved dyspnea (52.7% vs 37.2%),	number of	renal function
18926433	refining inclusion			20-80 mL/min and	hypokalemia; ongoing or planned	classification of pts as	60 d	and less likely to experience failure	treatment groups.	associated with
(151)	criteria and endpoints			elevated natriuretic	IV therapy with positive inotropic	"success," "unchanged," or		(manifested by worsening HF, death, or	Study was not	rolofylline, a
				peptide levels	agents, vasopressors, vasodilators	"failure" based on their		renal impairment) compared with pts	powered to	selective renal
				were enrolled	with the exception of IV nitrates, or	changes in symptoms and		treated with placebo (16.2% vs 28.2%).	quantitatively	vasodilator, is
				within 24 h of	mechanical support (intra-aortic	renal function. This pilot		By comparing rolofylline 30 mg with	distinguish	the first
				presentation	balloon pump, endotracheal	phase was not powered to		placebo, the OR estimated from the	between the 3	evidence that
					intubation, or ventricular assist	demonstrate statistically		proportional odds model was 0.51 (95%	active doses,	an intervention
					device); severe pulmonary	significant changes. The		CI: 0.28–0.94). In the prespecified	although trends	to prevent
					disease; significant stenotic	major objective was to		subgroup of pts with higher natriuretic	emerged	renal
					valvular disease; previous heart	evaluate the performance		peptide levels, pretreatment BNP level	suggesting a	impairment
					transplant or admission for cardiac	of this novel endpoint and		≥500, or NT pro-BNP ≥2000 pg/mL,	dose-related	may positively
					transplantation; clinical evidence of	refine it on the basis of real-		most likely representing more severe	preservation of	affect acute
					ACS <2 wk before screening; and	world experience.		acute HF, the OR from the proportional	renal function and	symptoms and
					acute HF caused by significant	Treatment success was		odds model was 0.59 (95% CI 0.30-	increase in	60-d outcome
					arrhythmias; pts at high risk of	defined as an improvement		1.17). SCr increased in pts receiving	diuresis, as well	in pts with
					seizures	in dyspnea (reported by the		placebo and remained stable or tended	as a greater	acute HF;
						pt using a 7-point Likert		to decrease in those receiving	effect on the	however,
						scale as moderately or		rolofylline. On d 14 the absolute	composite	results were
						markedly better compared		differences between placebo and	endpoint at the 30	not confirmed
						with study start) determined		rolofylline for change in creatinine	mg dose.	in the phase III
						at 24 and 48 h after the		increased with increasing rolofylline		trial.
						start of study drug (d 2 and		dose, reflecting the lesser increase in		
						or d of discharge if		creatinine in rolofylline-treated pt (r = -		
						earlier, as long as the pt did		0.12, p=.030). Treatment with 30 mg,		
						not meet any of the criteria		the dose selected for the pivotal trials,		
						for treatment failure.		was associated with a trend toward		
						Treatment failure was		reduced 60-d mortality or readmission		
						defined as death, early HF		for cardiovascular or renal cause (HR:		
						readmission (occurring		0.55; 95% CI: 0.28-1.04).	1	

						within 7 d of study drug				
						initiation) worsening HF as				
						defined daily by the				
						physician assessment by d				
						7 or persistent renal				
						impairment as defined				
						ahove				
						Unchanged hts were				
						classified as unchanged if				
						neither criteria for success				
						or failure were met.				
DIG, Ahmed,	The objective of this	Registry	7,788	Pts who were at	Age <21 yrs; baseline EF not	All-cause mortality and all-	Mortality and	All-cause mortality occurred in 173 pts	Beta blockers	Diuretic use
2008	propensity-matched	• •		≥21 y of age were	available; MI, cardiac surgery or	cause hospitalization during	hospitalizations	not receiving diuretics and 208 pts	were not	associated with
17532064	study was to			eligible for the	PTCA within 4 wk; unstable or	36.7 mo of median follow-	due to	receiving diuretics respectively during	approved for HF	increased
(152)	determine the effect of			main trial if they	refractory angina <1 month; II-III	up	cardiovascular	2,056 and 1,943 person-y of follow-up	during the DIG	mortality
	diuretics on mortality			had HF, a LVEF	AV block without pacemaker; AF or		causes and HF	(HR:1.36; 95% CI: 1.08-1.71; p=0.009).	trial and data on	among elderly
	and hospitalizations in			≤45%, were in	flutter; cor pulmonale; constrictive			All-cause hospitalizations occurred in	beta blocker use	in the DIG trial
	HF pts ≥65 y.			normal sinus	pericarditis; acute myocarditis;			413 pts not receiving and 438 pts	were not	
				rhythm, and did	hypertrophic cardiomyopathy;			receiving diuretics respectively during	collected	
				not meet any of 20	amyloid cardiomyopathy; complex			1,255 and 1,144 person-y of follow-up		
				easily determined,	CHD; tx with IV inotropic agents;			(HR: 1.18; 95% CI: 0.99-1.39; p=0.063).		
				not overly	K+ < 3.2 mmol/L or >5.5 mmol/L;			Diuretic use was associated with		
				restrictive	on heart transplant list; noncardiac			significant increased risk of		
				exclusion criteria	cause of HF; Creatinine >3.0			cardiovascular mortality (HR:1.50; 95%		
					mg/dL or severe liver disease;			CI:1.15-1.96; p=0.003) and HF		
					unlikely to comply			hospitalization (HR:1.48; 95% 95% CI:		
								1.13-1.94; p=0.005).		
EVEREST,	To evaluate short-term	RCT	2,048	Age ≥18 y with a	Cardiac surgery within 60 d of	Composite of changes in	Dyspnea (d 1),	Rank sum analysis of the composite	N/A	In pts
Gheorghiade,	effects of tolvaptan		(trial A)	history of chronic	enrollment, cardiac mechanical	global clinical status based	global clinical	primary endpoint showed greater		hospitalized
2007	when added to		and	HF (requiring	support, biventricular pacemaker	on a visual analog scale	status (d 7 or	improvement with tolvaptan vs placebo		with HF, oral
<u>17384438</u>	standard therapy in pts		2,085	treatment for a	placement within the last 60 d,	and body weight at d 7 or	discharge), body	(trial A, mean [<u>+</u> SD], 1.06 [0.43] vs 0.99		tolvaptan in
(153)	hospitalized with HF		(trial B)	minimum of 30 d	comorbid conditions with an	discharge if earlier	weight (d 1 and 7	[0.44]; and trial B, 1.07 [0.42] vs 0.97		addition to
				before	expected survival of less than 6		or discharge), and	[0.43]; both trials p<.001). Mean (<u>+</u> SD)		standard
				nospitalization)	mo, acute MI at the time of		peripheral edema	body weight reduction was greater with		therapy
				who had been	nospitalization, hemodynamically		(d / or discharge).	tolvaptan on d 1 (trial A, 1.71 [1.80] vs		including
				hospitalized	significant uncorrected primary			0.99 [1.83] kg; p<.001; and trial B, 1.82		diuretics
				primarily for	cardiac valvular disease, retractory			[2.01] vs 0.95 [1.85] kg; p<.001) and		Improved
				worsening CHF	end-stage HF, hemotiltration or			day / or discharge (trial A, 3.35 [3.27]		many, though
				and had a LVEF	alaysis, supine systolic arterial			vs 2.73 [3.34] kg; p<.001; and trial B,		not all, HF
				≤40% (measured	blood pressure of less than 90 mm			3.77 [3.59] VS 2.79 [3.46] KG; p<.001).		signs and
				at any point within	Hg, SUT concentration >3.5 mg/dL			improvements in global clinical status		symptoms,
				T y of admission).	(>309.4 µmol/L), serum potassium			were not different between groups.		without serious
				Entry required HF	concentration > 5.5 mEq/L, and			More pts receiving tolvaptan (684		AE.

			symptoms at rest or minimal exertion and signs of congestion (≥2 of the following: dyspnea, jugular venous distention, or peripheral edema) at time of randomization.	hgb of less than 9 g/dL			[76.7%] and 678 [72.1%] for trial A and trial B, respectively) vs pts receiving placebo (646 [70.6%] and 597 [65.3%], respectively) reported improvement in dyspnea at d 1 (both trials p<.001). Edema at d 7 or discharge improved significantly with tolvaptan in trial B (p =0.02) but did not reach significance in trial A (p=0.07). Serious AE frequencies were similar between groups, without excess renal failure or hypotension		
EVEREST, Konstam, 2007 <u>17384437</u> (154)	To investigate the effects of tolvaptan initiated in pts hospitalized with HF	4,133	Pts age ≥18 y with reduced LVEF ≤40%, signs of volume expansion, NYHA class III/IV symptoms, and hospitalization for exacerbation of chronic HF no more than 48 h earlier were eligible for the study	Cardiac surgery within 60 d of enrollment, cardiac mechanical support, biventricular pacemaker placement within the last 60 d, comorbid conditions with an expected survival of <6 mo, acute MI at the time of hospitalization, hemodynamically significant uncorrected primary cardiac valvular disease, refractory end- stage HF, hemofiltration or dialysis, supine systolic arterial bp < 90 mm Hg, SCr >3.5 mg/dL (309 µmol/L), K+ level greater than 5.5 mEq/L, and hgb <9 g/dL.	Dual primary endpoints were all-cause mortality (superiority and noninferiority) and cardiovascular death or hospitalization for HF (superiority only)	Composite of cardiovascular mortality or cardiovascular hospitalization; incidence of cardiovascular mortality; and incidence of clinical worsening of HF (death, hospitalization for HF, or unscheduled visit for HF). Additional secondary endpoints included changes from baseline in body weight at d 1, serum sodium level at d 7 or discharge in pts with a baseline serum sodium <134 mEq/L, edema score at d 7 or discharge for those with edema at baseline, pt- assessed dyspnea at d 1 for those	During a median follow-up of 9.9 mo, 537 pts (25.9%) in tolvaptan group and 543 (26.3%) in placebo group died HR for mortality: 0.98; 95% CI, 0.87-1.11; p=.68). Kaplan-Meier estimates of mortality at 1 y were 25.0% in the tolvaptan group and 26.0% in the placebo group. Composite cardiovascular death or hospitalization for HF: 871 tolvaptan group (42.0%) and 829 placebo group (40.2%) HR: 1.04; 95% CI: 0.95-1.14; p=.55). Secondary endpoints of CV mortality, CV death or hospitalization, and worsening HF were also not different. Tolvaptan significantly improved secondary endpoints of d 1 pt-assessed dyspnea (p<.001), with 74.3% of the tolvaptan group and 68.0% of the placebo group demonstrating an improvement in dyspnea score, as well as d 1 body weight, and d 7 edema. In pts with hyponatremia, serum sodium levels significantly increased. The KCCQ overall summary score was not improved at outpt wk 1, but body weight and serum sodium effects persisted long after discharge.	N/A	Tolvaptan initiated for acute treatment of pts hospitalized with HF had no effect on long- term mortality or HF-related morbidity.

							with dyspnea at baseline, and KCCQ overall summary score at outpt wk 1.			
DIG, Ahmed (UAB), 2006 <u>16709595</u> (155)	Non-potassium- sparing diuretics are commonly used in HF. They activate the neurohormonal system, and are potentially harmful. Yet, the long-term effects of chronic diuretic use in HF are largely unknown. This study retrospectively analysed the DIG data to determine the effects of diuretics on HF outcomes. Effects of diuretics on mortality and hospitalization at 40 mo of median follow- up were assessed using matched Cox	Registry	2,782	The DIG trial enrolled 7,788 ambulatory chronic systolic (LVEF ≤45%; n=6800) and diastolic (LVEF >45%; n=988) HF pts in normal sinus rhythm, of whom 6,076 (78%) were receiving diuretics	Age <21 y; baseline EF unavailable; MI, cardiac surgery or PTCA within 4 wk; unstable or refractory angina <1 mo; II-III AV block without pacemaker; AF or flutter; cor pulmonale; constrictive pericarditis; acute myocarditis; hypertrophic cardiomyopathy; amyloid cardiomyopathy; complex CHD; tx with IV inotropic agents; K+ < 3.2 mmol/L or > 5.5 mmol/L; on heart transplant list; noncardiac cause of HF; Creatinine > 3.0 mg/dL or severe liver disease; unlikely to comply	All-cause mortality	Mortality from worsening HF, and hospitalizations due to all causes and worsening HF	Propensity scores for diuretic use were calculated for each of the 7,788 DIG participants using a non-parsimonious multivariable logistic regression model, and were used to match 1,391 (81%) no-diuretic pts with 1,391 diuretic pts. Mean survival times for diuretic vs. no- diuretic pts: 47 (95% CI: 46–48) and 50 (95% CI: 49–51) mo. All-cause mortality was 21% for no- diuretic pts and 29% for diuretic pts (HR: 1.31; 95% CI: 1.11-1.55; p=0.002). HF hospitalizations occurred in 18% of no-diuretic pts and 23% of diuretic pts (HR: 1.37; 95% CI: 1.13-1.65; p=0.001). Mortality due to HF occurred in 6% of pts in the no-diuretic group and 9% of those in the diuretic group (HR: 1.36; 95% CI 0.99–1.87; p=0.056). Compared with 8% deaths among pts never receiving diuretics during the first 24 mo of follow-up, 19% of those who	Based on non- randomized findings, retrospective. Beta-blockers were not approved for HF during the DIG trial and data on beta-blocker use were not collected	Chronic diuretic use was associated with increased long-term mortality and hospitalizations in a wide spectrum of ambulatory chronic systolic and diastolic HF pts

	regression models							always received diuretics during the same time died from all causes (multivariable adjusted HR: 1.81; 95% CI 1.38–2.38; p<0.0001).		
DIG, Domanski, 2006 <u>16762792</u> (156)	Investigate the associations between death, cardiovascular death, death from worsening HF, SCD, and HF hospitalization among those taking a PSD, NPSD, or no diuretic in the DIG trial	Registry	6,797	HF and LVEF ≤45% enrolled in the DIG trial. The DIG randomly assigned 6800 pts with HF and LVEF ≤45% to digoxin or placebo in a double-blinded controlled trial	Age <21 y; baseline EF not available; MI, cardiac surgery or PTCA within 4 wk; unstable or refractory angina <1 mo; II-III AV block without pacemaker; AF or flutter; cor pulmonale; constrictive pericarditis; acute myocarditis; hypertrophic cardiomyopathy; amyloid cardiomyopathy; complex CHD; tx with IV inotropic agents; K+ < 3.2 mmol/L or > 5.5 mmol/L; on heart transplant list; noncardiac cause of HF; Creatinine > 3.0 mg/dL or severe liver disease; unlikely to comply	All-cause death, cardiovascular death, death from progressive HF, SCD, and HF hospitalization	N/A	For death from HF or SCD, the incident rates were not significantly different between the pts taking the PSD only versus no-diuretic group (p=.06, and p=.7, respectively); for the other 4 events (hosp for HF, death from CVD, death from all causes, hosp or death from HF), the incidence rates were all significantly lower in the no-diuretic group than in the PSD-only group (p≤.01). For all 6 events, the incidence rates for the NPSD only group were significantly higher than the PSD-only group (p≤.02). The incidence rates for the NPSD-only group and both-diuretic groups were comparable and not significantly different with the p- values ranging from .07 to .6 (date not shown). After multivariate analysis, the risks of all 6 endpoints were increased in pts taking a NPSD, whether or not they were taking a PSD after adjusting for known covariates. There was no significant difference in the risk of any of these events for pts taking only PSD and those taking no diuretics. Compared with not taking diuretic, risk of death (RR: 1.36, 95% CI: 1.17–1.59, p<.0001), cardiovascular death (RR: 1.38, 95% CI: 1.17–1.63; p=.0001), progressive HF death (RR: 1.41, 95% CI: 1.06–1.89, p=.02), SCD (RR: 1.67, 95% CI 1.23–2.27, p=.001), and HF hospitalization (RR: 1.68, 95% CI: 1.41–	Post-hoc study and doses of diuretics were not available for analysis. Also, did not analyze effects of treatment over time. Beta- blockers were not approved for HF during the DIG trial and data on beta blocker use were not collected	Among pts in the DIG trial, compared with pts not taking any diuretic or taking a PSD, pts taking non- PSD had a higher RR of death.

								-		
								1.99, p< .0001) were increased with NPSD.		
								There was no significant difference in		
								any endpoint for pts taking only PSD		
								compared to no diuretic. PSD only		
								subjects were less likely than NPSD		
								subjects to be hospitalized for HF (RR:		
								0.71, 95% CI: 0.52–0.96, p=.02).		
Cohort study	This study sought to	Cohort	1,354	Study population	Pts with LVEF >40%, those with	All-cause mortality	The composite	Pts with HF in the highest diuretic dose	Possible selection	This study
low vs. high	determine the dose-			consisted of 1,354	HF due to valvular disease, and		endpoint of death	quartile were found to have significantly	bias. Diuretic	suggests that
dose (Cedars	dependent relation			consecutive pts	those aged <18 y were excluded		or urgent	impaired survival compared with pts in	dose was	in pts with
Sinai/ UCLA),	between loop diuretic			with advanced	from the analysis		transplant (status	the lowest quartile.	examined at only	advanced
Esnagnian,	use and HF prognosis			SYSTOLIC HF			IA) was analyzed	Survival estimates at 1 y were 91%,	a single point in	systolic HF, the
2006				referred to a single			as a secondary	88%, 80%, and 69% for quartiles 1, 2,	time, without	use of nigner
<u>10/05130</u> (457)				university medical			enapoint	3, and 4, respectively ($p < 0.0001$).		doses of loop
(157)								Survival estimates at 2° were 0.5° ,	crinages in doses	diuretics is
				and/or transplant				<0.0001) Dooth from any cause: HP:	Dver time.	
				evaluation from				3 / 95% CI: 2 / / 7	characteristics	
				1085 to 200/				death and urgent transplantation: HR	and other HE	
				1909 10 2004				2.7. 95% CI 2.0-3.5	treatments	mortality
								death from progressive HF: HR: 3.8	different among	Although it may
								95% CI 2 1-6 8	the diuretic dose	appear obvious
								sudden death: HR: 3.6: 95% CI: 1.9-6.8	quartiles. With	that pts with
								Univariate analysis- compared with the	adjustment for	HF requiring
								lowest quartile, increasing loop diuretic	multiple	higher loop
								dose quartiles were associated with a	covariates, larger	diuretic doses
								progressive increase in mortality	loop diuretic	to prevent fluid
								(second quartile, HR: 1.2; 95% CI: 0.8-	doses could still	retention and
								1.7; third quartile, HR: 2.1, 95% CI 1.5-	be a surrogate for	control
								2.9; and fourth quartile, HR: 3.4; 95% CI	other measured	symptoms
								2.4-4.7). Diuretic dose quartiles were	and unmeasured	might be sicker
								associated with increased mortality	variables that	than pts
								independent of other covariates. After	reflect more	receiving lower
								adjustment the highest diuretic quartile	severe HF.	doses, the
								remained a significant predictor of	Serum potassium	powerful and
								increased mortality at 1 y (HR: 4.2; 95%	and magnesium	independent
								CI: 1.5-11.3) and at 2 y (HR: 4.0; 95%	level information	association
								CI 1.9-8.4)	was unavailable.	with mortality
									Propensity	warrants
									matching was not	further
									performed. So the	consideration.
									relation between	

									loop diuretic dose and increased mortality is causative.	
Cochrane review, 2005 <u>16034890</u> (158)	To compare the effects and adverse effects of continuous IV infusion of loop diuretics with those of bolus IV administration among pts with HF class III-IV	Meta- analysis	254	RCTs comparing the efficacy of continuous IV infusion versus bolus IV administration of loop diuretics in HF in a total of 8 RCTs.	N/A	(7 studies) urine output, cc/24 h; Electrolyte disturbances (hypokalemia, hypomagnesemia); adverse effects (tinnitus and hearing loss); (single study) duration of hospital stay and cardiac mortality; (2 studies) all cause mortality	N/A	Urine output: the output (as measured in cc/24 h) was noted to be greater in pts given continuous infusion with a WMD of 271 cc/24 h (95%CI: 93.1-449; p<0.01). Electrolyte disturbances were not significantly different in the two treatment groups : RR 1.47; 95%CI: 0.52-4.15; p=0.5. Less adverse effects (tinnitus and hearing loss) were noted with continuous infusion: RR 0.06; 95%CI: 0.01- 0.44; p=0.005. Duration of hospital stay was significantly shortened by 3.1 d with continuous infusion WMD -3.1; 95%CI - 4.06 to -2.20; p<0.0001; while cardiac mortality was significantly different in the two treatment groups, RR: 0.47; 95% CI: 0.33 to 0.69; p<0.0001. All-cause mortality was significantly different in the two treatment groups, RR: 0.52; 95% CI: 0.38- 0.71; p<0.0001.	Available data were insufficient to confidently assess the merits of the 2 methods of giving IV diuretics. The existing data did not allow definitive recommendations for clinical practice	Based on small and relatively heterogeneous studies, this review showed greater diuresis and a better safety profile when loop diuretics were given as continuous infusion.
SOLVD, Domanski, 2003 <u>12932605</u> (159)	Study sought to determine whether NPSDs in the absence of a PSD may result in progressive HF.	Registry	6,797	Symptomatic and asymptomatic pts with a LVEF fraction <0.36 were randomly assigned to double-blinded treatment with enalapril or placebo.	Only drug class was ascertained; specific medications were not recorded.	Rates of hospitalization for HF, death from cardiovascular disease, death from all causes, and either hospitalization or death due to worsening HF	N/A	The risk of hospitalization from worsening HF in those taking a PSD relative to those taking only a non-PSD was 0.74; 95% CI 0.55-0.99; p= 0.047. The RR for cardiovascular death was 0.74; 95% CI 0.59-0.93; p=0.011), for death from all causes 0.73; 95% CI: 0.59-0.90; p=0.004), and for hospitalization for, or death from, HF 0.75; 95% CI: 0.58-0.97; p=0.030). Compared with pts not taking any diuretic, the risk of hospitalization or death due to worsening HF in pts taking	This study is retrospective and, therefore, not definitive proof that NPSDs cause progressive HF. Because the diuretic dosage was not available, we cannot draw conclusions about a dose-response	This study shows that in pts with moderate or severe LV dysfunction, the use of a PSD is associated with a reduced risk of death or hospitalization due to

_								1			
	DDAICE	The progractic	Desister	1 452			Death ar cardiac		non-PSDs alone was significantly increased (RR:1.31: 95% CI: 1.09-1.57; p=0.0004); this was not observed in pts taking PSDs with or without a NPSD (RR: 0.99; 95% CI: 0.76- 1.30; p=0.95).	relationship. Also, baseline data were used, and diuretic treatment status may have changed over time	progressive HF, relative to pts taking only a non-PSD.
	PKAJSE, Neuberg, 2002 <u>12094185</u> (152)	importance of diuretic resistance (as evidenced by a high- dose requirement) was retrospectively evaluated in pts with advanced HF who were enrolled in the PRAISE.	Registry	1,100	NYHA functional class IIIb/IV HF despite mandatory background treatment with digoxin, diuretics, and ACE inhibitors.	potassium level was <3.5 or >5.5 mmol/L and if their SCr level was >3.0 mg/dL (270 >mol/L), and/or if they met other standard exclusion criteria	transplantation		with mortality, sudden death, and pump failure death (aHR: 1.37 (p=.004), aHR: 1.39 (p=.042), and aHR: 1.51 (p=.034), respectively. Use of metolazone was an independent predictor of total mortality (aHR: 1.37; p=.016) but not of cause-specific mortality. In quartiles of loop diuretic dose, total mortality increased progressively without a clear risk threshold, more than doubling from the lowest-dose group to the highest-dose group (p=.001). Unadjusted mortality rates were 20.7% (n=152), 30.7% (n=313), 36.8% (n=304), and 44.8% (n=84) for increasing dose of furosemide (40 mg, 40-80 mg, 80-120 mg, and 120 mg daily) or bumetanide (1 mg, 1-2 mg, 2-3 mg, and 3 mg daily), respectively. By proportional hazard regression, high diuretic dose was an independent predictor of total mortality (aHR: 1.37; p=0.004), sudden death (a HR: 1.39, p=0.042), and pump failure death (aHR: 1.51, p=0.034).	r study as pts enrolled in PRAISE were not on beta blockers.	high doses of loop diuretic (>80mg of furosemide or >2mg of buetanide daily) were independently associated with mortality in pts with advanced HF. When degree of congestion was considered together with its treatment, the associated risks were additive, suggesting that diuretic resistance should be considered an indicatior of prognosis in chronic HF. However, retrospective analysis does not establish harm, nor rule out a long-term
										benefit of diuretic therapy.	
--	---	-----	-----	--	--	--	--	---	---	--	
Ultrafiltration	1		1			1		I			
UNLOAD substudy (Maryland), Rogers, 2008 <u>18226766</u> (160)	This study was designed to evaluate the consequences of UF and standard IV diuretic (furosemide) therapy on GFR and renal plasma flow in pts with acute decompensated HF.	RCT	19	Pts hospitalized for acute decompensated HF with an EF <40% and ≥2 signs of hypervolemia based on at least 2 of the following findings: ≥2+ pitting edema of the lower extremities, jugula venous pressure ≥10 cn H ₂ O, pulmonary edema or pleural effusion on chest radiograph consistent with decompensated congestive HF, ascites, paroxysmal nocturnal dyspnea, or ≥2 pillow orthopnea.	 Pts with ACS, SCr >3.0 mg/dL, SBP ≤ 90 mm Hg, hematocrit >45%, inability to obtain venous access, or clinical instability likely to require IV nitroprusside or IV pressors, history of administration of IV diuretics and/or vasoactive drugs during the present hospitalization (except for a single dose of IV diuretics administered in the ED before hospitalization), use of iodinated radiocontrast material, contraindication to the use of anticoagulation, systemic infection, or hemodialysis were excluded from the substudy. 	Urine output, GFR (as measured by iothalamate), and renal plasma flow (as measured by para- aminohippurate) were assessed before fluid removal and after 48 h.	N/A	19 pts (59 +/- 16 y, 68% were male) were randomized to receive UF (n= 9) or IV diuretics (n= 10). The change in GFR (-3.4 +/- 7.7 mL/min vs -3.6 +/- 11.5 mL/min; p= .966), renal plasma flow (26.6 +/- 62.7 mL/min vs 16.1 +/- 42.0 mL/min; p= .669), and filtration fraction (-6.9 +/- 13.6 mL/min vs -3.9 +/- 13.6 mL/min; p= .644) after treatment were not significantly different between the UF and furosemide treatment groups. No significant difference in net 48-h fluid removal between the groups (-3211 +/- 2345 mL for UF and -2725 +/- 2330 mL for furosemide, p= .682). UF removed 3666 +/- 2402 mL. Urine output during 48 h was significantly greater in the furosemide group (5786 +/- 2587 mL) compared with the UF group (2286 +/- 915 mL, p< .001).	Small single center study. Pts receiving UF tended to have worse GFR at baseline. Renal hemodynamic outcomes were measured during acute fluid removal (48 h). Unknown as to when changes in GFR or RPF occur. The present study does not assess any chronic effects of UF or diuresis.	During a 48-h period, UF did not cause any significant differences in renal hemodynamics compared with the standard treatment of IV diuretics	
UNLOAD, MR Costanzo, 2007 <u>17291932</u> (161)	To compare the safety and efficacy of venovenous UF and standard IV diruetic therapy for hypervolemic HF pts	RCT	200	Pts hospitalized with primary diagnosis of acute decompensated congestive HF; evidenc of fluid overload as indicated by: pitting edema (2+) of lower extremities; jugular venous distension; pulmonary edema or pleural effusion; ascites;	ACS; creatinine >3.0; SBP <90 mmHg; hematocrit >45%; prior administration of IV vasoactive drugs in the ED; clinical instability requiring pressors during hospitalization; recent use of iodinated contrast material; severe concomitant disease expected to prolong hospitalization; sepsis; on or	Total weight loss during first 48 h; change in dyspnea score during first 48 h.	Change in global assessment; change in QoL (living with HF); changes in BNP; changes in 6 min walk test; total fluid loss during first 48 h; changes in BUN and creatinine; changes in renin and aldosterone; rate of hospitalizations and	Primary efficacy endpoints: Weight loss was greater in the UF than in the standard-care group $(5.0 \pm 3.1 \text{ kg})$ vs. $3.1 \pm 3.5 \text{ kg}$; p=0.0001) Dyspnea scores were similarly improved in the UF and standard-care group at both 8 and 48 h. Primary safety endpoints: Changes in SCr were similar in the 2 groups throughout the study and % of pts with rise in SCr >0.3 mg/dL were	Population not representative of HF pts (better renal function, and excluded pts with hypotention); industry sponsored;	While weight loss was greater and rehospitalization at 90 d was lower in the UF arm, data not available on long-term effects on renal function or resource utilization. The pts in trial represented	

				paroxysmal nocturnal dyspnea or 2-pillow orthopnea	requires renal dialysis; history of cardiac transplant; heparin allergy.		unscheduled clinic and ED visits in the wk after inpt treatment	similar in both groups at 24 h, 48 h and at discharge Serum potassium <3.5 mEq/l occurred in 1% of the UF group and 12% of diuretics group (p=0.018)	small trial; usual care group not very aggressively treated	hemodynamically stable/congested HF pts that respond very well to diuretics and have better outcomes vs. HF population in general.
Case-series (Mayo clinic), Liang, 2006 <u>17174232</u> (162)	Present data on UF from a series of pts treated at the Mayo clinic who were generally sicker and had failed at least 1 IV treatment	Case- series	11	HF pts admitted to Mayo clinic who have failed at least 1 IV diuresis treatment	Contraindication to UF	Change in creatinine; fluid loss; complications from UF	N/A	5 pts had significant rise in creatinine, 5 required dialysis, overall 6-mo mortality 55%, bleeding and complications related to positional flow were common.	Small study; single institution; pts with much worse prognosis vs general HF population	In high risk populations, (mean GFR of 38 mL/min) UF may not be the most appropriate choice.
RAPID-CHF, Bart, 2005 <u>16325039</u> (163)	Pilot study which compared a single 8-h UF intervention to usual care in pts admitted with decompensated HF	RCT	40	Hospitalized with primary diagnosis of HF; at least 2+ edema of the lower extremities and at least either JVP >10, pulmonary edema or pleural effusion on CXR, pulmonary rales, pulmonary wedge or LVEDP >20, ascites, or pre-sacral edema	Severe stenotic valvular disease; ACS; SBP <90; hematocrit >40% 5. poor peripheral venous access; hemodynamic instability; use of iodinated radiocontrast within 72 h of consent or anticipated use; severe concomitant disease	24-h weight loss	Total volume removal at 24 and 48 h; global HF and dyspnea assessments; serum electrolytes; and length of hospital stay	No difference in 24-h weight loss (p=0.240), significantly more fluid removal with UF (4,650 mL in UF group vs. 2,838 mL in usual care group, (p=0.001) and improved dyspnea scores (p=0.039) and no change in creatinine. Trend toward greater weight loss at 24 h in the UF group	Small study, pilot	UF group had more fluid removed, with no significant change in creatinine, however no difference in 24 h weight loss.
EUPHORIA, Costanzo, 2005 <u>16325040</u> (164)	Compared UF to historical controls in order to determine if use of UF before any IV diuretics in pts with decompensated HF and modest renal dysfunction reestablishes euvolemia and permits hospital discharge in ≤ 3 d, without hypotension, a $\geq 25\%$ increase in SCr. or other AEs.	Observat ional study	20	Volume overload; modest degree of renal dysfunction or diuretic resistance (chronic daily PO furosemide \geq 80 mg, or torsemide \geq 40mg, or bumetamide \geq 2mg and SCr \geq 1.5 mg/dl), relatively high diuretic requirement at baseline; <12 h since hospitalization, given no vasoactive drugs and <1 dose IV diuretic	Hematocrit >40%;. end- stage renal disease requiring dialysis; Hypercoagulability; SBP <85 mm Hg; Requirement for IV inotropes; Participation in another research study or previously in this trial	Weight loss; hospital length of stay	Increase in creatinine >25%, hypotension; BNP levels	An average of 8,367 ± 4,232 mL were removed with 2.6 ± 1.2, 8 h UF courses. Of the 19 pts 12 (68%) were discharged in ≤3 d	Small observational study; Single- center series	Concluded that UF decreases length of stay and readmissions. compared the treatment period with the pre- treatment period, rather than with a randomized control cohort.

Agostoni, 1994 <u>8154506</u> (165)	Investigated the mechanisms involved in the regulation of salt and water metabolism in pt with HF. Extracorporeal UF was utilized as a nonpharmacologic method for withdrawal of body fluid.	RCT	16	Treated with a combination of digoxin, oral furosemide, and ACE inhibitor (captopril or enalapril) for chronic; sinus rhythm; NYHA II-III	Pts with acute MI (<1 y), angina pectoris, primary valvular disease, intermittent claudication, fibrotic or primary vascular lung diseases, sinus or atrioventricular node dysfunction, effort-induced severe ventricular arrhythmias or an artificial pacemaker	Scores of lung water; exercise test parameters; plasma renin, aldosterone and norepinephrine		3 mo after UF or IV diuretic, the hemodynamic variables examined at rest had returned to the control values in the diuretic group, but not the UF group. In the UF group, right atrial pressure, pulmonary artery pressure and wedge pressure were still as reduced as they had been 24 h after UF. (p<0.01, only figures displayed).	Small older study	After UF, improved functional capacity continued for 3 mo after the procedure
Pepi, 1993 <u>8038023</u> (166)	To investigate the pathophysiological (cardiac function and physical performance) significance of clinically silent interstitial lung water accumulation in pts with moderate HF; to use isolated UF as a means of extravascular fluid reabsorption	RCT	24	NYHA functional class II- III HF and clinically silent by radiologically evident increased lung water; sinus rhythm and EF <35%	Severe tricuspid or mitral regurgitation; pleural, pericardial or abdominal effusion	LVSF (from ultrasonography); Doppler evaluation of mitral, tricuspid, and aortic flow and echo- Doppler determination of cardiac output; radiological score of extravascular lung water; R/LV filling pressures; oxygen consumption at peak exercise and exercise tolerance time in cardiopulmonary tests.		UF decreased radiological score of extravascular lung water (from 15(1)- 9(1)) and of right (from 7.1 (2.3)-2.3 (1.7) mm Hg) and left (from 17.6 (8.8)- 9.5 (6.4) mm Hg) ventricular filling pressures; an increase in oxygen consumption at peak exercise (from 15.8 (3.3) to 17.6 (2) mL/min/kg) and of tolerance time (from 444 (138) to 508 (134) s); decrease in atrial and ventricular dimensions; no changes in the systolic function of the left ventricle; a reduction of the early to late filling ratio in both ventricles (mitral valve from 2 (2) to 1.1 (1.1)); (tricuspid valve from 1.3 (1.3) to 0.69 (0.18)) and an increase in the deceleration time of mitral and tricuspid flow, reflecting a redistribution of filling to late diastole. Variations in the ventricular filling pattern, lung water content, and functional performance persisted for 3mo in all cases. None of these changes was detected in the control group.	Small older study; single institution	Pathophysiological study involving UF and hemodynamic outcomes.
Agostoni, 1993 <u>8426008</u> (167)	The aim of this study was to evaluate whether UF is beneficial in pts with moderate congestive HF.	RCT	36	NYHA functional classes II and III; stable clinical condition; receiving drug treatment (stable over last 6 mo) optimized to prevent development of edema and maintain a stable body weight (+/- 1	Pts with acute MI (<1 y), angina pectoris, primary valvular disease, intermittent claudication, fibrotic or primary vascular lung diseases, sinus or atrioventricular node dysfunction, effort-induced	Functional performance was assessed with cardiopulmonary exercise tests	Plasma norepinephrine levels	Significant reductions in UF group right atrial pressure (from $8 \pm 1 - 3.4 \pm 0.7$ mm Hg, pulmonary wedge pressure (from $18 \pm 2.5 - 10 \pm 1.9$ mm Hg) and cardiac index (from $2.8 \pm 0.2 - 2.3 \pm 0.2$ L/min). During the follow-up period, lung function improved, extravascular lung water (X-ray score) decreased and	Small older study	Pathophysiological study involving UF and hemodynamic outcomes.

kg in l	last 6 mo); severe ventricular	peak oxygen consumption (mL/min per	
therap	peutic digoxin level arrhythmias or an artificial	kg) increased from 15.5 \pm 1 (d -1) to	
(if on	digoxin) pacemaker	$17.6 \pm 0.9 (d 4)$, to $17.8 \pm 0.9 (d 30)$, to	
		18.9 ±1 (d 90) and to 19.1 ±1 (d 180).	
		Oxygen consumption at anaerobic	
		threshold (mL/min per kg) also	
		increased from 11.6 ±0.8 (d -1) to 13	
		± 0.7 (d 4), to 13.7 ± 0.5 (d 30), to 15.5	
		± 0.8 (d 90) and to 15.2 ± 0.8 (d 180).	
		These changes were associated with	
		increased ventilation, tidal volume and	
		dead space/tidal volume ratio at peak	
		exercise. Improvement in exercise	
		performance was associated with a	
		decrease in norepinephrine at rest, a	
		downward shift of norepinephrine	
		kinetics at submaximal exercise and an	
		increase in norepinephrine during	
		orthostatic tilt. None of these changes	
		were recorded in group B.	

ACS indicates acute coronary syndrome; ADHERE, Acute Decompensated Heart Failure National Registry; AE, adverse event; AUC, area under the curve; BNP, B-Type natriuretic peptide; BUN, blood urea nitrogen; CHD, chronic heart disease; CHF, congestive heart failure; CrCl, creatinine clearance; CV, cardiovascular; DAD-HF, Dopamine in Acute Decompensated Heart Failure; DBP, diastolic blood pressure; DIG, Digitalis Investigation Group; DM, diabetes mellitus; ED, emergency department; eGFR, glomerular filtration rate; EUPHORIA, Early Ultrafiltration Therapy in Patients with Decompensated Heart Failure and Observed Resistance to Intervention with Diuretic Agents; EVEREST, Efficacy of Vasopressin Antagonism in hEart failuRE: Outcome Study With Tolvaptan; HDD, high dose diuretics; HF, heart failure; Hgb, hemoglobin; HTN, hypertension; ICU, intensive care unit; IV, intravenous; KCCQ, Kanasa City Cardiomyopathy Questionnaire; LDD, low dose diuretics; LDFD, low-dose furosemide; LOS, length of stay; LVEF, left ventricular ejection fraction; MCS, mechanical cardiac support; N/A, not applicable; NPSD, nonpotassium-sparing diuretics; NT-pBNP, N-terminal pro-B-Type natriuretic peptide; PO, per oral; PRAISE, Prospective Randomized Amlodipine Survival Evaluation; PROTECT, Placebo-controlled Randomized study of the selective A(1) adenosine receptor antagonist rolofylline for patients hospitalized with acute heart failure and volume Overload to assess Treatment Effect on Congestion and renal function; PTCA, percutaneous transluminal coronary angioplasty; PSD, potassium-sparing diuretics; pts, patients; RAPID-HF, Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure; RCT, randomized control trial; SBP, systolic blood pressure; SCD, sudden cardiac death; SCr, serum creatinine; SOLVD, Studies of left ventricular dysfunction; Tx, treatment; UF, ultrafiltration; UNLOAD, Ultrafiltration Versus Intravenous Diuretics for Patients Hospitalized for Acute Decompensated Heart Failure; VAS, visual analog scale,

Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)

Study Name,	Aim of Study	Study Type	Background	Study Size	Etiology	Etiology Patient Population			dpoints	Mortality	Trial	Absolute	P Values & 95% CI:
Author, Year	-		Therapy	-		·					Duration	Benefit	
											(Years)		
			Pre-trial	N (Total)	Ischemic/	Inclusion	Inclusion Exclusion		Secondary	1st Year			
			standard	n (Experimental)	Non-Ischemic	Criteria Criteria		Endpoint	Endpoint	Mortality			
			treatment.	n (Control)						-			

CONSENSUS 1987 <u>2883575 (</u> 168)	To Evaluate influence of enalapril on prognosis of NYHA class IV HF	RCT	Diuretics (spironolactone 53%, mean dose 80mg), digitalis (93%), other vasodilators, except ACEI (ie nitrates 46%)	253; 127;126	CAD 73%	Severe HF/symptoms at rest/NYHA class IV; Increased heart size >600 ml; BP: 120/75; HR: 80; AF 50%	APE; hemodynamicall y import aortic/MV stenosis; MI w/in prior 2 mo Unstable angina; planned cardiac surgery; right HF b/c of pulm disease; Cr>300 umol/L	Mortality	Change in NYHA- FC, LV size, Cr level	52% placebo group and 36% enalapril group (6 mo mortality: 26% in enalpril group and 44% in placebo group)	0.51 y	N/A	Crude mortality at end of 6 mo (primary endpoint), 26% in enalapril group and 44% in placebo group—40% reduction (p =0.002). Mortality was reduced by 31% at 1 y (p=0.001)
10 y FU of CONSENSUS 1999 <u>10099910</u> (169)	Report on the survival at the 10-y follow up of the pts randomized in CONSENSUS. (1st study to show prognostic improvement by an ACEI. Pts in NYHA class IV HF treated with enalapril or placebo. After study completion all pts were offered open- label enalapril therapy).	10-y open- label follow-up study (via completion of a questionnaire) on the survival status of pts in CONSENSUS -a RCT.	All pts were offered open- label enalapril therapy	315; 77; 58		253 randomized pts included in analysis of time from randomization to death; Survivors (135) of the double- blind period included in analysis of the time from end of double-blind period to death; Severe, NYHA IV		Mortality			10 y		5 pts, all in the enalapril group, were long-term survivors (p=0.004). Averaged over the trial (double-blind plus open- label extension) risk reduction was 30% (p=0.008), 95% CI: 11% - 46%. At end of double-blind study period, mortality considerably higher among pts not receiving open ACEI therapy

SOLVD 1991 2057034 (170)	Study the effect of enalapril on mortality and hospitalization in pts with chronic HF and EF \leq 35%	RCT	Diuretics + Digoxin	2569; 1285; 1284	Ischemic heart disease 72%	LVEF <35%; Mild to severe (11% class I/<2% class IV); LVEF 25%; BP: 125/77; HR: 80; AF: 8-12%	Age >80 y; Unstable angina; MI w/in past mo; Cr>2.0 mg/dL	Mortality	Hospitalizations; Incidence of MI; Mortality by specific causes; Combined mortality and morbidity from both SOLVD+/SOLVD-	15.70%	3.45 y	Treating 1000 SOLVD+ pts with enalapril for ~3 y would save ~50 premature deaths and 350 hospitaliz ations.	Reduced mortality by 16%; (95% CI, 5-26%; p=0.0036)
SOLVD 1992 <u>1463530 (</u> 90)	Study effect of ACEIs on total mortality and mortality from CV causes, the development of HF, and hospitalization for HF in pts with EF <u><</u> 35%	RCT	No drug treatment for HF	4228; 2111; 2117	History of ischemic heart disease 85%	EF <35%; Asymptomatic; NYHA class I (67%) + II; EF: 28%; BP: 126/78; HR: 75; AF: 4%	As per SOLVD+	Mortality; Combined mortality and the incidence of HF and rate of hospitalizatio n for HF	Incidence of HF and rate of hospitalization for HF		3.12 y		Reduced mortality: p=0.30; 95% CI: -8-21%
SOLVD F/U 2003 <u>12788569</u> (91)	12-y FU of SOLVD to establish if the mortality reduction with enalapril among pts with HF was sustained, and whether a subsequent reduction in mortality would emerge among those with asymptomatic ventricular dysfunction.	12 y f/u of RCTs [SOLVD+ and SOLVD-]	N/A	6784; 3391; 3393	N/A	Participation in SOLVD+ and SOLVD- Asymptomatic to severe; NYHA I-IV	N/A	Mortality	N/A	N/A	N/A	Enalapril extended median survival by 9.4 mo in the combined trials (95% CI: 2.8–16.5, p=0.004).	In the prevention trial, 50.9% of the enalapril group had died c/w 56.4% of the placebo group (p=0.001). In the treatment trial, 79.8% of the enalapril group had died c/w 80.8% of the placebo group (p=0.01). Combined prevention and treatment trials: HR for death was 0.90 for the enalapril group c/w placebo group (95% CI: 0.84–0.95, p=0.0003).

ATLAS 1999 <u>10587334</u> (171)	To compare the efficacy and safety of low and high doses of ACEI on the risk of death and hospitalization in chronic HF. than the large doses that have been shown to reduce morbidity and mortality in pts with HF. AIM: Investigate if low doses and	RCT	N/A	3164; 1596 to the low- dose strategy and 1568 to the high- dose strategy.	CAD 65%	LVEF <=30%; NYHA class II, III, or IV, despite treatment with diuretics for ≥2 mo (Treatment for HF in ED or hospital within 6 mo required for pts in class II); Prior use of digitalis, ACEIs, or vasodilators allowed but not mandated; NYHA II-IV (mainly class II); LVEF 23%; SBP 126 mmHg;	Acute coronary ischemic event or revascularizatio n procedure within 2 mo; History of sustained or symptomatic ventricular tachycardia; Intolerant of ACEIs; SCr >2.5 mg/dL	Mortality from all causes	Combined risk of all-cause mortality and hospitalization for any reason; CV mortality, CV hospitalizations; All-cause mortality combined with CV hospitalizations; CV mortality combined with CV hospitalizations; CV mortality combined risk of fatal and nonfatal MI plus hospitalization for	5 y	High-dose group had 8% lower risk of all-cause mortality (p=0.128) and 10% lower risk of CV mortality (p=0.073) than low-dose group. Death or hospitalization for any reason, high- dose group had 12% lower risk than low-dose group, p=0.002. Total number of hospitalizations: high- dose group 13% fewer hospitalizations for any reason (p=0.021), 16% fewer hospitalizations for CV reason (p=0.05), and 24% fewer hospitalizations for HF
	AIM: Investigate if low doses and					(mainly class II); LVEF 23%; SBP 126 mmHg:			fatal and nonfatal MI plus hospitalization for		CV reason (p=0.05), and 24% fewer bospitalizations for HE
	high doses of		1			HR 80: NYHA			unstable angina		(p=0.002).
	ACEIs have		1			class: III (few II					(
	similar benefits.		l ·			and IV)					
Post-MLACELUS	SP			I	1		I		II	1	
1 OST MI NOLI US											

SAVE, 1992 <u>1386652 (</u> 89)	hypothesis that the long-term administration of captopril to survivors of acute MI who had baseline LV dysfunction but did not have overt HF requiring vasodilator therapy would reduce mortality, lessen deterioration in cardiac performance, and improve clinical outcome.	RUI	Beta-Diockers 36%; Digitalis 26%; Nitrates 51%	2231; 1115; 1116	100%	Alive 3 d after MI; LVEF <40%; >21 y of age, but <80; Killip class I — 60% (60% of the ps did not have even transient pulmonary congestion at baseline/the time of their acute MI; EF 31%; BP 113/70; HR 78;	Failure to undergo randomization within 16 d after the MI; Relative contraindication to the use of an ACEIs or the need for such an agent; SCr > 2.5 mg/dl	all causes	Nortality from CV causes; Mortality combined with a decrease in the EF of at least 9 units in surviving pts; CV morbidity (development of severe CHF or the recurrence of MI); Combination of CV mortality and morbidity; 2 endpoints of severe HF (treatment failure): 1st, development of overt HF necessitating treatment with ACEI and 2nd, hospitalization to treat CHD.	3.5 y	Mortality from all causes was significantly reduced in the captopril group (228 deaths, or 20%) as c/w the placebo group (275 deaths, or 25%); the RR:19% (95% CI, 3- 32%; p= 0.019). RR:21% (95% CI, 5- 35%; p = 0.014) for death from CV causes, 37% (95% CI, 20-50%; p<0.001) for the development of severe HF, 22% (95% CI, 4- 37%; p= 0.019) for CHF requiring hospitalization, and 25% (95% CI, 5- 40%; p= 0.015) for recurrent MI.
------------------------------------	--	-----	---	------------------	------	---	---	------------	---	-------	--

AIRE 1993 <u>8104270 (</u> 172)	Investigated the effect of therapy with ACEI ramipril, on survival in pts who had shown clinical evidence of HF at any time after an acute MI. Also, to compare the incidences of progression to severe or resistant HF, nonfatal re- infarction and stroke between the 2 groups.	RCT		2006; 1014; 992		Aged ≥18 y, with a definite acute MI 3-10 d before randomization; Clinical evidence of HF at any time since acute MI	Use of an ACEI considered to be mandatory	Mortality from all causes			1.3 y		Mortality from all causes was significantly lower for pts on ramipril compared to pts on placebo. RR: 27%; 95% CI: 11-40%; p = 0.002. Prespecified secondary outcomes: risk reduction of 19% for the 1st validated outcome— namely, death, severe/resistant HF, MI, or stroke (95% CI: 5% - 31%; p=0.008).
TRACE 1995 7477219 (173)	To determine whether pts who LV dysfunction soon after MI benefit from long-term oral ACE inhibition.	RCT	Beta blocker 16%; Calcium antagonist 28%; Diuretic 66%; Nitrates 53%; Digoxin 28%.	1749; 876; 873	Ischemic 100%	Consecutive pts >18 y hospitalized with MI; Criteria for MI: chest pain or electrocardiogra phic changes, accompanied by >2X increase in one or more cardiac enzymes; LV dysfunction (EF <35%); NYHA class 1 - 41%; BP 121/76; HR 81	Contraindication to ACEI or a definite need for them; Severe, uncontrolled DM; Hyponatremia (<125 mmol/L); Elevated SCr level (2.3 mg/dL)	Death from any cause	Death from a CV cause, sudden death; Progression to severe HF (hospital admission for HF, death due to progressive HF, or HF necessitating open-label ACEI); Recurrent infarction (fatal or nonfatal); Change in the wall-motion index (EF)	The mortality from all causes at 1 y was 24%.		24 lives were saved after one mo of treating 1000 pts	During the study period, 304 pts in the trandolapril group died (34.7%), as did 369 in the placebo group (42.3%). RR: 0.78 (95% CI, 0.67 - 0.91; p=0.001). In every subgroup, treatment with trandolapril was associated with a reduction in risk.

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; AIRE, Acute Infarction Ramipril Efficacy; APE, acute pulmonary embolism; ATLAS, Assessment of Treatment with Lisinopril and Survival; BP, blood pressure; CAD, coronary artery disease; CHD, chronic heart disease; CHF, congestive heart failure; CONSENSUS Cooperative North Scandinavian Enalapril Survival Study; Cr, creatinine; CV, cardiovascular; C/W, compared with; DM, diabetes mellitus; ED, emergency department; FU, follow-up; HF, heart

failure; HR, heart rate; LV, left ventricular; MI, myocardial infarction; MV, mitral valve; N/A, not applicable; NYHA, New York Heart Association; pts, patients; SAVE, survival and ventricular enlargement trial; SBP, systolic blood pressure; SOLVD, Studies Of Left Ventricular Dysfunction; RCT, randomized control trial; SCr, serum creatinine; and TRACE, Trandolapril Cardiac Evaluation.

Data Supplement 19. ARBs (Section 7.3.2.3)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy Pre-trial standard treatment	Study Size N (Total) n (Experimental) n (Control)	Etiology Ischemic/ Non-Ischemic	Patient Po Inclusion Criteria	pulation Exclusion Criteria	Severity	En Primary Endpoint	dpoints Secondary Endpoint	Mortality 1st Y Mortality	Trial Duration (Y)	Statistical Results
CHARM Alternative; Granger et al; (2003) <u>13678870</u> (174)	Discover whether ARB could improve outcome in pts not taking an ACEI (intolerant)	RCT	Diuretics, Beta-blockers (55%), spironolacton e 24%, Digoxin 45- 46%	2028; 1013; 1015	Ischemic 67-70%	Symptomatic HF, EF <40%, no ACEI (b/c of intolerance)	onena	NYHA II-IV; mild to severe (<4% class IV); EF: 30%; BP: 130/70; HR: 74- 75; AF: 25-26%	Composite of CV death or hospital admission for CHF	CV death, hospital admission for CHF or non-fatal MI; CV death, CHF admission, non-fatal MI, non- fatal stroke; CV death, CHF admission, non- fatal MI, non-fatal stroke, coronary revascularization; Death (any cause); New DM	Tot T monuny	2.8 у	Absolute reduction of 7 major events per 100 pts threated - NNT 14 pts to prevent 1 CV death or hospitalization. HR: 0.77 (95% CI: 0.67-0.89); p=0.0004
CHARM- ADDED; McMurray et al; (2003) <u>13678869</u> (175)	To investigate if ARB + ACEI in pts with chronic HF improve clincal outcomes	RCT	Beta blocker- 55%; spironolacton e 17%; Digoxin 58- 59%	2548; 1276; 1272	Ischemic 62-63%	Symptomatic HF; EF <40%; Treatment with ACEI; Age >18 y		NYHA class II-IV; mild to severe (<3% class IV) ; EF 28%; BP 125/75; HR 74; AF 27%	Composite of CV death or hospital admission for CHF	CV death, hospital admission for CHF or non-fatal MI; CV death, CHF admission, nonfatal MI, non- fatal stroke; CV death, CHF admission, non- fatal MI, non-fatal stroke, coronary revascularization; Death (any cause); New DM		3.4 y	Absolute reduction of 4.4 pts with events per 100 pts treated- NNT of 23 to prevent 1 first event of CV death or CHF hospitalization. RR: 0.85 (95% CI: 0.75-0.96); p=0.011

VALIANT; Pfeffer et al; (2003) <u>14610160</u> (176)	Compare the effect of an ARB, ACEI and the combination of the 2on mortality	Random ized double blind multicen ter trial	Beta- blockers; ASA	14,703 Valsartan:4909 Captopril-: 4909 VAL + CAP: 4885	Ischemic 100% (MI inclusion criteria)	Age >18 y; Acute MI complicated by HF; LV systolic dysfunct (EF <35%), (<40% on radionuclide ventriculograp hy); SBP > 100 mmHg; Cr < 2.5 mg/dL	Prior intolerance or contra- indication to ACEI/ ARB	NYHA I-IV; asymptomatic- severe, EF 35%; BP: 123/72; HR: 76	Death from any cause		12.5% VAL 12.3% VALCAP 13.2% CAP	2.1 у	VAL and CAP: 1.0 (97.5% CI- - 0.90-1.11); p= 0.98 ; VAL+CAP and CAP: 0.98 (97.5% CI 0.89-1.09); p= 0.73
Val-HeFT; Cohn et al; (2001) <u>11759645</u> (177)	Evaluate long term effects of adding ARB to standard therapy for HF	RCT	Diuretics; Digoxin 67%; Beta blocker 35%; ACEI 93%	5010; 2511; 2499	Ischemic 57%	Age>18 y; NYHA II, II, IV; At least 2 wk of background meds including ACEIs; EF <40% and LVID >2.9 cm/BSA		NYHA II-III, IV (only ~2% class IV); Mild to severe; EF 27%; BP 123/76; AF 12%	Mortality; Combined end point of mortality and morbidity	Change in EF; • NYHA class, QoL scores; Signs and symptoms of HF		1.92 y	Mortality similar for the 2 treatment groups. For the combined endpoint: RR: 0.87; 97.5% CI, 0.77- 0.97; p=0.009
HEAAL study; Lancet 2009; 374: 1840-48. <u>19922995</u> (178)	Compared the effects of high- dose vs low-dose losartan on clinical outcomes in pts with HF.	RCT	Diuretic drugs (77%), beta blockers (72%), and ARBs (38%).	3846 losartan 150 mg (n=1927) or 50 mg daily (n=1919).	IHD 64%	>18 y; NYHA class II– IV; LVEF <40%, with stable CV medical therapy for at least 2 wk; Intolerance to ACEI; Investigators encouraged to start beta blocker and titrate to a maximum, whenever possible	Pregnancy or lactation; known intolerance to ARBs; Systolic arterial blood pressure <90 mm Hg; Significant stenotic valvular heart disease; Active myocarditis; active pericarditis; Planned	NYHA II-IV (70% II); EF: 33%; BP: 124/77; HR: 71; AF; 28%	Death or admission for HF	Composite endpoint of death or CV admission. Additional prespecified outcomes included: death, death or all-cause admission, CV death, all-cause admission, CV admission, CV admission, admission for HF, and changes in the severity of heart disease		4.7 y median f/u	Treating pts with 150 mg dose instead of 50 mg dose would result in 1 additional pt w/out the primary event at 4 y for every 31 pts treated. Composite: 828 (43%) pts in 150 mg group vs. 889 (46%) in 50 mg group vs. 889 (46%) 95% Cl: 0.82-0.99; p=0.027) • Components: 635 pts in 150 mg group vs. 665 in 50 mg group died (HR: 0.94, 95% Cl: 0.84-1.04; p=0.24), and 450 vs. 503 pts admitted for HF (0.87, 0.76–0.98; p=0.025)

CHARM- Overall <u>13678868</u> (179)	Aimed to find out whether the use of an ARB could reduce mortality and morbidity.	RCT- parallel, randomi zed, double- blind,	Diuretics 83% Beta blockers 55% ACEI 43% Spironolacton e 17% Digoxin 43%	7601 pts (7599 with data) 3803 3796	>18 y; NYHA class II– IV for at least 4 wk; 3 distinct populations: pts with LVEF <40% who were not receiving ACEIs (previous intolerance) or who were currently receiving ACE, and pts with LVEF >40%	heart transplantati on w/in 6 mo; coronary angioplasty, CABG, acute MI, UA pectoris, cerebrovasc ular accident, or TIA within the previous 12 wk; Suspected significant renal artery stenosis SCr > 265 µmol/L, serum potassium >5.5 mmol/L Bilateral renal artery stenosis; symptomatic hypotension Women of childbearing potential not using adequate contraceptio n; Critical aortic or mitral stenosis; MI, stroke, or open-	NYHA II-IV NYHA II-IV Only 3% class IV	The primary outcome of the overall program: all- cause mortality; For all the component trials: CV death or hospital admission for CHF.	The annual CV death rate among the placebo group who had reduced LVEF was around 9% and was only 4% in the placebo group of CHARM- Preserved.	3.1 y	886 (23%) pts in candesartan and 945 (25%) in placebo group died (unadjusted HR: 0.91; 95% Cl: 0.83–1.00; p=0.055; covariate aHR: 0.90 95% CU: 0.82–0.99; p=0.032) • Fewer CV deaths (691 [18%] vs 769 [20%], unadjusted HR: 0.88; 95% Cl: 0.79–0.97; p=0.012; covariate aHR: 0.87; 95% Cl: 0.78–0.96; p=0.006) • Hospital admissions for CHF (757 [20%] vs 918 [24%], p<0.0001)
						or open- heart surgery in					

			the previous			
			4 wk; Use of			
			an ARB in			
			the previous			
			2 wk			

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blockers; ASA, aspirin; BP, blood pressure; BSA, body surface area; CABG, coronary artery bypass graft; CHARM, Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity; CHD, chronic heart disease; CHF, congestive heart failure; Cr, creatinine; CV, cardiovascular; DM, diabetes mellitus; EF, ejection fraction; FU, follow-up; HEAAL study, effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure; HF, heart failure; HR, heart rate; IHD, ischemic heart disease; LV, left ventricular; LVD, left ventricular dilatation; MI, myocardial infarction; MV, mitral valve; N/A, not applicable; NNT, number needed to treat; NYHA, New York Heart Association; QoL, quality of life; pts, patients; SBP, systolic blood pressure; RCT, randomized control trial; SCr, serum creatinine; TIA, transient ischemic attack; UA, unstable angina; Val-HeFT, Valsartan Heart Failure Trial; and VALIANT, Valsartan in Acute Myocardial Infarction.

Data Supplement 20. Beta Blockers (Section 7.3.2.4)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size N (Total) n (Experimental) n (Control)	Etiology	Patient Population Inclusion Exclusion Criteria Criteria Exclusion Criteria NYHA class III Uncontrolled HTN;		Severity	End Primary Endpoint	ooints Secondary Endpoint	Morta Annualized Mortality	lity 1st Y Mortality	Trial Duration	Statistical Results
CIBIS II CIBIS Il investigators and committee members (1999) <u>10023943</u> (180)	Investigate the efficacy of bisoprolol in decreasing all-cause mortality in chronic HF	RCT- multicent er double- blind randiomi sed placebo controlle d trial (Europe)	Diuretics + ACEI; [amiodarone allowed14- I6%]	2647; 1327; 1320	Documented Ischemic 50%	NYHA class III or IV EF: <35% 18-80 y old	Uncontrolled HTN; MI/UA w/in previous 3 mo; PTCA/CABG w/in previous 6 mo; AV-block >1st degree w/o PPM; Heart rate < 60bpm; resting SBP <100mmHg; renal failure; Reversible obstruct lung disease; Use of beta blocker	Moderate to severe. Mean BP: 130/80; Mean HR: 80; Mean EF: 28%; Mean LVEDD: 6.7 cm; AF: 20%	All-cause mortality	All-cause hospital admissions All CV deaths Combined endpoints Permanent treatment withdrawal	13.2% Placebo group 8.8% Treatm't group	N/A	1.3 y	HR: 0.66 (95% Cl: 0.54-0.81); p<0.0001
MERIT-HF; MERIT study Group; (1999) <u>10376614</u> (181)	Investigate whether Metoprolol CR/XL lowered mortality in pts with decreased EF and	RCT multicent er double- blind randiomi sed placebo controlle	Diuretics + ACEI [Amiodarone NOT allowed]	3991; 1991; 2001	Ischemic 65%	NYHA II-IV; 40-80 y old; LVEF <40% (36-40 if 6-min walk <450m); HR >68 bpm	MI/UA w/in 28 d; Contra-indication or current use of beta blocker; PTCA/CABG w/in 4 mo Planned transplant or ICD; Heart block > 1 st degree w/o PPM;	Mild to severe. Mean BP: 130/78; Mean HR: 78; Mean EF 28%; AF 16- 17%	All-cause mortality All-cause mortality in combination with all-cause admission to hospital	N/A	11.0% Placebo group 7.2% Treatm't group	N/A	1 y	Treatment of 27 pt for 1 y can prevent 1 death. 0.66 (95% CI: 0.53-0.81); p=0.00009

	symptoms of HF	d trial (Europe + USA)					SBP<100mmHg							
COPERNICUS ; Packer et al; (2002) <u>12390947</u> (182)	Investigate whether Carvadiolo is beneficial in severe HF	RCT double blind	Diuretics (PO or IV) + ACEI (or ARB); [Amiodarone allowed 17- 18%]	2289; 1156; 1133	Ischemic 67%	Euvolumic NYHA class IV; LVEF <25%; No positive inotropes or vasodilators w/in 4 d	Pt requiring hospitalized intensive care; Use of positive inotropes or IV; vasodilators w/in 4-d; Coronary revascularization/MI/C VA/sign VT or VF w/in 2 mo; SBP < 85 mmHg, Heart rate <68, Cr >2.8 mg/dL	Severe Mean BP: 123/76; Mean HR: 83; Mean EF 20%;	All-cause mortality	Combined risk of death or hospitalization- any reason; Combined risk of death or hospitalization- -CV reason; Combined risk of death or hospitalization- -HF reason; Pt global assessment	19.7% placebo [24.0% in pts with recent or recurrent cardiac decompensa tions]	18.5% in placebo group 11.4% in Carvedil ol group	10.4 mo	Treating 1000 pt for 1 y led to savings of 70 premature deaths p=0.0014
SENIORS; Flather et al; (2005) <u>15642700</u> (183)	Assess effects of the beta blocker Nebivolol in pts_>70 y regardless of EF.	RCT	Diuretics + ACEI (+aldosterone antagonist in 29%)	2128; 1067; 1061	Prior h/o CAD in 69%	Age >70 Chronic HF with one of the following: hospitalization with CHF w/in a year or EF <35% w/in the past 6 months	New HF therapy w/in 6 wk or change in drug therapy w/in 2 wk Contra-indication to beta blockers, current use of beta blockers Significant renal dysfunction CVA w/in 3 mo.	Mild to severe Mean BP: 139/81; Mean HR: 79; Mean EF 36% (1/3 with EF >35%);	Composite of all-cause mortality or CV hospital admission	All-cause mortality Composite of all-cause mortality or all- cause hospital admissions All cause hospital admissions CV hospital admissions CV mortality Composite of CV mortality or CV hospital admissions NYHA class assessment; 6 MWT	N/A	N/A	1.75 у	Absolute risk reduction 4.2%; 24 pts would need to be treated for 21 mo to avoid one event RR: 0.86; 95% CI: 0.74-0.99; p=0.039

	D 1 1/	DOT		0700 4054			B 11 (115				E ()	N1/A	•	
A I rial of the	Designed to	RCI	ACEIs (if	2708; 1354;	Ischemic	NYHA class III	Reversible cause of HF	NYHA III or IV	Death from	Death from CV	For pt in	N/A	~2 y	449 pt in placebo
Beta-Blocker	determine		tolerated)	1354	59%	or IV HF	present	(92% class III)	any cause	causes (death	NYHA			group (33%) died,
Bucindolol in Pt	whether		[91% ACE;			LVEF <35%	Candidates for heart	EF 23%;		due to pump	functional			411 in the
with Advanced	bucindolol		7% ARB], for			>18 y	transplantation	HR 82;		failure or an	class III, the			bucindolol group
Chronic HF	hydrochlorid		at least 1 mo.				Cardiac	BP 117/71;		ischemic event	annual			(30%; HR: 0.90;
The Beta-	e, a		Before the				revascularization	AF 12%		or sudden	mortality rate			95% CI, 0.78-
Blocker	nonselective		publication of				procedure within the			death)	was 16% in			1.02; unadjusted
Evaluation of	beta-		the results of				previous 60 d			Hospitalization	the placebo			p=0.10; adjusted
Survival Trial	adrenergic		the DIG trial,				UA			for any reason	group; For pt			p=0.13)
Investigators	blocker and		12 digoxin				Heart rate <50 beats			Hospitalization	with NYHA			. ,
11386264	mild		therapies				per minute. SBP			because of HF	class IV. the			
(184)	vasodilator.		were				<80mmHa			Composite of	annual			
()	would		required, but				Decompensated HF.			death or heart	mortality rate			
	reduce the		thereafter its							tansplantation	in the			
	rate of death		use became							IVEE at 3 and	placebo			
	from any		discretionary							12 mo	droup was			
	cause									MI: Ool : and	28%			
	among of		[DIO 3470].							any change in	Overall [.]			
	with									the need for	annual			
	advanced										mortality of			
										thorapy	17% in			
										шегару	17/0 III plaasha			
	assess its													
											group c/w			
	various										15% in the			
	subgroups										DUCINGOIOI			
	defined by										group.			
	ethnic													
	background													
	and													
	demographic													
	criteria —													
	specifically													
	women and													
	members of													
	minority													
	groups.													

COMET; Poole-Wilson et al; (2003) <u>12853193</u> (185)	To compare the effects of carvedilol and metoprolol on clinical outcome in	RCT	Diuretics, ACEIs	3029; 1511 carvedilol; 1518 metoprolol tartrate	N/A	NYHA class II- IV EF <35% Previous CV admission	N/A	Mild to severe	All-cause mortality Composite endpoint of all-cause mortality, or all-cause	N/A	N/A	N/A	4.8 y	All-cause mortality 34% carvedilol and 40% metoprolol (HR: 0.83; 95% CI 0.74-0.93; p=0.0017)
(CIBIS) III; 2005 <u>16143696</u> (186)	Sufficient data do not currently exist to establish the optimum order of initiating chronic HF therapy (ACEI vs. beta blocker). This was the objective of the CIBIS III trial it compared the effect on mortality and hospitalizatio n of initial monotherap y with either bisoprolol or enalapril for 6 mo, followed by their combination for 6 to 24 mo.	Multicent er, prospecti ve, randomiz ed, open- label, blinded end point evaluatio n (PROBE) trial,24 with 2 parallel groups.	Diuretics 84%; Digoxin 32%	1010 Bisoprolol 505; Enalapril 505	CAD 62%	>65 y, NYHA class II or III, and LVEF <35% (By echo within the 3 mo) Clinically stable HF (without clinically relevant fluid retention or diuretic adjustment within 7 d)	Treatment with an ACEI, an ARB, or a beta blocker for >7 d during the 3 mo before randomization Heart rate at rest <60 beats/min without a functioning pacemaker Supine SBP <100 mm Hg at rest SCr≥220 µmol/L AV block greater than first degree without a functioning pacemaker Obstructive lung disease contraindicating bisoprolol treatment	NYHA II or III; mild to moderate CHF LVEF 29%; Heart rate 79; SBP 134	The primary endpoint was time-to-the- first-event of combined all- cause mortality or all-cause hospitalization	Combined end point at the end of the monotherapy phase and the individual components of the primary end point, at study end and at the end of the monotherapy phase. CV death CV hospitalization	N/A	N/A	Mean of 1.22±0.4 2 y (maximu m of 2.10 y).	In the ITT sample, 178 pt (35.2%) with a primary end point in the bisoprolol-first group, and 186 (36.8%) in the enalapril-first group (absolute difference -1.6%; 95% CI -7.6 to 4.4%; HR: 0.94; 95% CI 0.77 to 1.16; noninferiority for bisoprolol-first versus enalapril- first treatment, p=0.019)

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; AV, atrioventricular; BP, blood pressure; CABG, coronary artery bypass graft; CHF, congestive heart failure; CIBIS II, Cardiac Insufficiency Bisoprolol Study II; COMET, Carvedilol Or Metoprolol European Trial; COPERNICUS, carvedilol prospective randomized cumulative survival; Cr, creatinine; CR/XL, controlled release/extended release; CV, cardiovascular; CVA, cerebrovascular accident; c/w, compared with; DIG, Digitalis Investigation Group; EF, ejection fraction; HF, heart failure; h/o, history of; HR, hazard ratio; ICD, ICD, implantable cardioverter defibrillator; ITT, intent to treat; MERIT-HF, Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure;

MI, myocardial infarction; MWT, minute walk test; NYHA, New York Heart Association; PPM, permanent pacemaker; PTCA, percutaneous transluminal coronary angioplasty; Pts, patients; QoL, quality of life; RCT, randomized control trial; RR, relative risk; SBP, systolic blood pressure; SCr, serum creatinine; UA, unstable angina; USA, United States of America; VF, ventricular fibrillation; VT, ventricular tachycardia; and w/o, without.

Data Supplement 21. Anticoagulation (Section 7.3.2.8.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Study Size (HF Subpopulation)	Patient	Population	En	dnoints	Statistical Analysis (Results)
	7 million Study			Suppopulation	Inclusion				Statistical Analysis (Results)
					Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	
WARCEF Pullicino 2006, <u>16500579</u> ; Homma 2012, <u>22551105</u> (187)	Compare efficacy of warfarin (INR 2.75) vs aspirin (325 mg/d) in HF pt in sinus rhythm	RCT, double blind/double dummy, multicenter, parallel group	N=2305, mean f/u 3.5 y; (69% power to detect ~18% reduction primary endpoint)	N/A	EF≤35%,NYHA I- IV, sinus rhytm, taking ACEI/ARB or H/N, planned treatment with beta blocker	Contraindication to or absolute indication for 1 treatment; MI/PCI/cardiac surgery <3 mo; decompensated HF, life expectancy otherwise <5 y, HF admission or CEA or PPM insertion <1 mo	Efficacy: time to first of (death+ischemic stroke+intracerebral hemorrhage); Safety: major hemorrhage	Efficacy: primary endpoint+MI+HF hospitalization; components of primary composite; Safety: intracerebral+intracranial hemorrhage	Primary Efficacy: 7.47 events (warfarin) vs. 7.93 events (aspirin) /100 person-y. Secondary: ischemic stroke – warfarin, HR: 0.52; Safety major hemorrhage: Warafin 1.78 vs aspirin 0.87/100 person- y. Primary Endpoint: p=0.40: 95% CI: 0.79 - 1.10; ischemic stroke p=0.0005, 95% CI: 0.33 - 0.82; major hemorrhage p<0.001
HELAS Cokkinos 2006 <u>16737850</u> (188)	Determine if warfarin(INR 2.0- 3.0) or aspirin (325 mg/d) reduces thromboemboli in HF	RCT, multicenter, double-blind, placebo-controlled; (converted to pilot study due to inadequate enrollment)	N=194, mean f/u 22 mo; Ischemic (aspirin vs warfarin), N=114; DCM (warfarin vs. placebo), N=80 (stopped at 4% target due to poor recruitment)	N/A	NYHA II-IV; EF <35%; Prespecified subgroups: Ischemic vs DCM	MI <2 mo; "reversible ischemia", mitral disease, HoCM, AF, LV thrombus, pregnancy, uncontr HTN, contra-ind to either study drug, otherwise <2 y expected survival	Efficacy: composite [nonfatal stroke + arterial TEE or PE + MI + rehospitalization + worsened HF + all- cause mortality]; Safety: ICH + "bleeding" on treatment	Need for coronary revascularization; readmission for ischemia	Primary Efficacy (events/100 person-y): Isch/aspirin (14.9), Isch/warfarin (15.7); DCM/warfarin (6); DCM/placebo (10); Safety: Isch/ warfarin (4), DCM/ warfarin (3), others (0). 2.2 events/100 person-y (5 stroke, 2 MI, no arterial TEE or PE).
WASH Cleland 2004 <u>15215806</u> (189)	Pilot Study: feasibility of study comparing warfarin (INR 2.5) to aspirin (300 mg/d) to placebo	Prospective multicenter placebo-controlled RCT, 3-arm, open- label, blinded endpoint	N=279 pts, mean f/u 27 mo	N/A	Required diuretics; LVEDD >55 mm or >30 mm/m ² or EF ≤35%; Prespecified subgroups: ischemic vs. DCM	"Definite" indication for warfarin or aspirin, MI < 4 wk, inpt status, contr-ind to either drug	Time to first event (on treatment or within 10 d of stopping treatment): composite [death + nonfatal MI + nonfatal stroke]	Prespecified: death or CV hospitalization; death or all- cause hospitalization; total hospitalizations; death or CV hospitalization or need for increased diuretic dose; worsening HF; MI; stroke; major hemorrhage.	Both ITT an AT: "no difference" PRIMARY ITT: Placebo: 26% (HR: 0.96; 95% Cl: 0.60-1.54); Aspirin: 32% (HR: 1.16; 95% Cl: 0.74-1.85); Warfarin: 26% (HR: 0.88; 95% Cl 0.54-1.43), p=0.22; AT: Placebo: 20% (HR: 1.08 95% Cl: 0.65-1.89); Aspirin: 22% (HR: 1.02 95% Cl: 0.59-1.75); Warfarin: 18% (HR: 0.89

						1			
									95% CI: 0.50-1.16); Secondar ITT: all-
									cause hospitalizations (Placebo 48% vs.
									Aspirin 64% vs. Warfarin 47%); Major
									hemorrhage "no difference"; minor
									hemorrhage (Placebo 5% vs. Aspirin 13%
									vs. Warfarin 17%), p=0.033
WATCH	Hypotheses:	Prospective.	N=1587:	N/A	NYHA II-IV. EF	Reversible HF:	Efficacy: time to first	Death: nonfatal MI: nonfatal	Efficacy ITT: Primary - No difference
Massie 2009	warfarin superior to	multicenter RCT.	treatment for 1		≤35%: sinus	contraindicated to	event of composite	stroke: hospitalization for	warfarin vs. aspirin vs. clopidogrel:
19289640	aspirin and	open label	v: mean f/u 1.9		rhythm on entry:	any study drug:	[death + nonfatal MI +	HF	Secondary - A group with more total and
(190)	clonidoarel	(warfarin) or double	y (stopped		on diuretics and	imminent procedure	nonfatal strokel: Safety:		HE hospital admissions: Safety ITT
(100)	superior to aspirin	blind APT group	early due to		ACE-I /ARB or	or surgery: other	major bleeding		warfarin=aspirin_both with more major
	for HF of with	comparing aspirin	noor		H/N	survival-limiting	major bloballig		bleeding than clopidogrel
	reduced I VEE in	(162 mg) vs	recruitment)			disease			Efficacy PRIMARY: ITT: warfarin vs
	sinus rhythm	clopidogrel (75 mg	reorditinonty			0.50050			aspirin: HR: 0.98: 95% CI: 0.86-1.12
		no load) vs warfarin							n=0.77 clopidogrel vs. aspirin: HR: 1.08
		(target INP 2.5)							95% CI: 0.83.1.40; p=0.57 warfarin vs
		(larger int 2.5)							dopidograf: HP: 0.80: 05% CI: 0.68 1.16
									r = 0.20 AT: worferin superior to conirin
									p=0.39. AT, waitain superior to $p=0.0005$) worfarin superior to
									(p=0.0095), wanann superior to
									ciopidogref (p=0.0031). SECONDART
									(22.2%) we we for in (16.5%) n=0.040
									(22.2%) vs. warrarin (16.5%), p=0.019;
									Total HF admissions aspirin (218) vs.
									warfarin (155), p <0.001. Safety
									PRIMARY: major bleeding warfarin
									(5.2%) vs. clopidogrel (2.1%), p=0.007;
									warfarin vs. aspirin (p=NS). POST HOC
									Ischemic group (N=1163): Strokes
									warfarin (0) vs. aspirin (1.6), p=0.01;
									warfarin (0) vs. clopidogrel (2.7%),
									p=0.0009; Nonischemic group (N=424)
									Major bleed clopidogrel (0.7%) vs.
									warfarin (6.3%), p=0.0093. AT analysis
									(not prespecified): warfarin superior to
									aspirin (p=0.0095); warfarin superior to
									clopidogrel (p=0.0031).

EPICAL Echemann 2002 <u>12413509</u> (191)	Compare warfarin vs. aspirin vs. both on survival in CHF	Prospective observational population-based, nonrandomized, consecutive hospital survivors of hospitalization, aspirin vs. warfarin at hospital discharge	N=417 with complete data, mean f/u= 5 y; aspirin (30.9%) vs. OAT (28.3%) vs. both (2.4%)	N/A	≥ 1 hospitalization for HF, NYHA II- IV, EF ≤30% or CTR ≥ 0.60, plus hypotension or systemic or pulmonary edema	Failure to meet inclusion criteria (systematic enrollment)	Survival 1 y and 5 y from index hospitalization; stratified by LVEF	None	Both warfarin (RR=0.60) and aspirin (RR=0.70) associated with improved survival Univariate survival: AC (1 y 77.7%; 95% CI: 71.7-82.4), 3 y 55.1%; 95% CI: 48.7- 61.5), 5 y 40.4% [95% CI: 34.1-46.8] vs. no AC (1 y 71.5% [95% CI: 64.9-78.1], 3 y 47.0% [95% CI: 39.6-54.3], 5 y 31.0% [95% CI 24.0-38.0; p=0.01] for AC vs no AC; Multivariate: OAT RR:0.60 [95% CI 0.4-0.8], aspirin RR: 0.7 [95% CI 0.5-0.9]
Wojnicz 2006 <u>16996844</u> (192)	Pilot Study: LMWH effects on clinical endpoints in chronic HF secondary to DCM	Prospective, randomized, active treatment control, open label comparing enoxaparin 1.5 mg/kg BID x 14 d, then 1 daily x 3 mos	N=102 (52 treatment, 50 control) enrolled, data on N=85 for analysis; f/u=1 y	N/A	Stable NYHA II-IV, EF ≤40%; cath to exclude CAD, Biopsy	Contraindicated to any heparin, T1DM, valvular HD, recent heparin exposure, CAD	Composite [mortality + urgent heart transplant + hospital admission for worsening HF] at 6 and 12 mo	Total survival, BNP, LVEF, echo chamber parameters, NYHA class change, VO ₂ max, QoL	Primary: no difference Primary: enoxaparin 4 vs. control 8, p=NS; mortality: p=NS; Secondary: BNP reduction enoxaparin (1125-489) p<0.001 vs. no change in control; LVEF improvement: enoxaparin increase 6.5%, p=0.023; 95% CI: 1.01-8.17.
RE-LY Connolly 2009 <u>19717844</u> (193)	Compare dabigatran vs. warfarin effects on stroke/arterial emboli in pts with AF	Noninferiority, multicenter, prospective RCT, blinded dab (110 or 150 mg BID) or unblinded warfarin (INR 2.0-3.0)	Total N=18,113; median f/u=2.0 y	HF n=5793 (32%): HF on dab 110 mg (n=1937/6015); HF on dab 150 (n=1934/6076); HF on warfarin (n=1922/6022).	AF + ≥1 additional risk factor for stroke (median CHADS2 score 2.1). HF as qualifying criteria req'd LVEF <40% or NYHA Class ≥ II	Excessive bleeding risk, severe valve disease, stroke <14 d/severe stroke <60 mo, creat clear <30 mL/min	Efficacy: composite [stroke or systemic embolism]; Safety: Major hemorrhage (2 y)	Stroke, systemic embolism, death, MI, PE, TIA, hospitalization	ITT, noninferiority with Cox prop hazards. Subsequent analyses for superiority Symptomatic HF: multivariate HR for dab 150 vs warfarin, p=0.33; 150 mg dab vs warfarin: stroke 0.64; 95% CI: 0.51-0.81; p<0.001 (p<0.05 for all stroke subgroups). MI: RR: 1.38; 95% CI1.00-1.91; p=0.048
ACTIVE-W 2006 <u>16765759</u> (194)	Combination clopidogrel + aspirin vs warfarin in reducing vascular events in AF	Prospective open label noninferiority RCT of [clopidogrel 75 mg + aspirin 75- 100 mg] vs warfarin (INR 2.0-3.0)	Total N=6706	HF N=2031 (30%)	AF, LVEF <45%	Other need for warfarin, excessive bleeding risk, prev ICH, platelets <50 K, mitral stenosis	Efficacy: First event of [stroke or arterial TEE or MI or vascular death]; Safety: Major hemorrhage	Efficacy: components of primary; Safety: Minor hemorrhage	KM log-rank (time to event) Total Study: Primary Efficacy: clopidogrel +aspirin: 5.60 events/y vs. warfarin 3.93 events/y; RR: 1.44; 95% CI 1.18-1.76; p=0.0003; stroke RR: 1.72; 95% CI: 1.24- 2.37; p=0.001
ARISTOTLE Granger 2011 <u>21870978</u> (195)	Compare apixaban to warfarin in preventing stroke in pt with AF	Prospective double-blind, double-dummy noninferiority + superiority RCT of AP 5 mg BID to warfarin INR 2-3	Total N=18,201 , median F/u=1.8 y	HF n=6451 (35.5%), apixaban=3235, warfarin=3216	≥2 episodes AF or flutter, CHADS2 ≥2 (HF criteria: symptomatic HF within 3 mo or LVEF ≤ 40%	Reversible AF, mitral stenosis, orther indication for anticoagulation, recent stroke, need for antiplatelet therapy (beyond low- dose aspirin), creat	Noninferiority: EFFICACY: stroke (ischemic or hemmorhagic) + systemic embolism; SAFETY: major bleeding	Superiority: EFFICACY: stroke (ischemic or hemmorhagic) + systemic embolism; all-cause mortality; SAFETY: major + clinical nonmajor bleeding	PRIMARY: ITT Efficacy: apixaban 1.27%/y vs warfarin 1.60%/y) Modified ITT Safety: apixaban 2.13% vs warfarin 3.09%; mortality apixaban 3.52% vs warfarin 3.94%. HF subgroup results not different (p for interaction 0.50) Efficacy: apixaban: HR: 0.79; 95% CI:

						>2.5 mg/dL			0.66-0.9;, p<0.001 for noninferiority, p=0.01 for superiority; Mortality apixaban: HR: 0.89: 95% CI: 0.80-0.99; p=0.047. Safety: apixaban: HR: 0.69; 95% CI: 0.60- 0.80; p<0.001 (apixaban RRR: 27%)
ROCKET AF Patel 2011 <u>21830957</u> (196)	Compare rivaroxaban to warfarin in preventing ischemic strokes in pt with nonvalvular AF	Prospective multicenter double- blind double- dummy event- driven noninferiority RCT of rivaroxaban 20 mg/d (15 mg if Cr Cl 30-49 mL/min) vs. warfarin (INR 2-3)	N=14,264 randomized, median f/u=707 d	8909 (rivaroxaban 4467, warfarin 4441) (62.5%)	Nonvalvular AF, CHADS2 ≥2; HF (clinical dx or LVEF ≤ 35%)	Mitral stenosis, absolute non-AF indication for AC, high risk for anticoagulation	Primary efficacy: composite [ischemic or hemorragic stroke + systemic embolism]; Primary safety: composite [major + nonmajor clinically relevant bleeding]	Secondary efficacy: composite stroke + systemic embolism + CV mortality]; composite [stroke + systemic embolism + CV mortality + MI]; individual components of primary composite. Secondary safety	Active treatment analysis (by design): rivaroxaban (1.7% per year events) noninferior to warfarin (2.2% per year events) for primary outcome; no difference in safety endpoints; fewer CHN hemorrhage and fatal bleeding in rivaroxaban group. Findings consistent for all subgroups. Efficacy: Per protocol, rivaroxaban HR: 0.79; 95% CI: 0.66 - 0.96; p<0.001 for noninferiority; HF subgroup ITT p=0.419. Safety superiority of rivaroxaban p=0.02
Belch 1981 <u>7291971</u> (197)	Effect of low-dose SQ H on lower extremity DVT in pts with HF and pts with chest infections	Prospective, randomized, open label, controlled study SQ H 5000 u q8h x 14 d or until discharge	Total N=100	HF subset n=38 (21 treatment, 17 control)	HF NYHA II-IV, clinical signs of volume overload	"Definite" risk of bleeding, DVT or PE on admission, >2 d bed rest prior to admission	DVT diagnosed by I-125 fribrinogen scanning every 2 d or until discharge	Clinical evidence of bleeding	H reduced demonstrable DVT Total group: DVT (Ctl 26% vs H 4% of treated, p<0.01); 20% had minor bleeding (bruising at injection site), no major bleeding
ARTEMIS Cohen 2006 <u>16439370</u> (198)	Safety and efficacy of fondaparinux in reducing VTE in older, moderate- high risk medical inpt	Double-blind, placebo-controlled, block randomized, multicenter RCT of SQ fondaparinux 2.5 mg/d for 6-14 d started within 48 h of admission	N=849 medical inpt, mean f/u=1 mo	HF n=160 (fondaparinux 78, placebo 82)	CHF (NYHA III-IV) or acute respiratory illness; expected bed rest >4 d; age >60	High bleeding risk" or contraindicated to anticoagulation, Creat >2.0 mg/dL, contrast allergy, mechanical vent >24 h (total), indication for AC prophylaxis or therapy, life expectancy otherwise <1 mo	Efficacy: DVT diagnosed by contrast venogray (d 5-15), symptomatic VTE (inc PE by imaging or fatal) through d 15; Safety: major bleeding	Efficacy: composite [Total VTE + bleeding + death at 1 mo]; Safety: composite [death or minor bleeding]	ITT (efficacy): all pt with ≥1 dose of drug (safety); HF pts=predefined subgroup. Fishers Exact and log-rank HF subgroup: Primary: fondaparinux 7/78 (9%) vs placebo 10/82 (12.2%), p=NS; Primary safety: p=NS (1 bleed in each group)

CERTIFY Tebbe 2011 <u>21315215</u> (199)	Compare LMWH to heparin on VTE incidence in elderly HF pt	Prospective, double-blind, double dummy, active control, randomized noninferiority study of certoparin 3000 u/d vs H 5000 u TID SQ (HF predefined subgroup)	Total N=3239, mean hospitalization 12.2 +/-5.1 d, mean treatment period = 9 d	HF n=470; 238 pts (cert) vs 232 pts (H),	age ≥70, clinical diagnosis of HF on admission (no further details)	Contraindicated to anticoagulation, History of DVT, PE or HIT2, stroke <3 mo, >3 d immobilization before randomization, cast or fracture, surgery <3 wk, severe sepsis, mechanical ventilation, any heparin <5 d	Efficacy: composite [prox DVT (compression USG d 8-20) + nonfatal PE + VTE-related death]; Safety: composite [major bleeding + minor bleeding + HIT]	Prox DVT, nonfatal PE, fatal VTE, distal DVT, symptomatic DVT, all-cause mortality, documented symtpomatic VTE, composite [nonfatal PE + prox DVT + all-cause mortality]	Active treatment only. No difference in efficacy or safety endpoints in HF pt based on treatment arm. Primary: cert 3.78% vs heparin 4.74%, OR: 0.79; 95% CI 0.32-1.94; p=NS; multivariate: insufficient to confirm noninferiority in HF pt.
THE PRINCE Kleber 2003 <u>12679756</u> (200)	Compare safety and efficacy of enoxaparin with UFH in preventing VTE in pts with HF or severe respiratory disease	Prospective, randomized, active control/parallel group open label, noninferiority comparison enoxaparin 40 mg/d vs heparin 5000 u TID for 10 +/- 2 d. 1-sided equivalence, upper limit = 9% or 4% difference in efficacy.	l otal N=665	HF n=333 for safety endpoint, n=206 for efficacy	NYHA III-IV	Contraindicated to heparin or anticoagulation, contrast allergy, DVT or PE on admission, immobilized >24 h prior to admission, taking warfarin or >low dose aspirin on admission	Efficacy: Comfirmed TEE (DVT by venography or autopsy, PE by V/Q, CXR/Q scan [plus confirmatory venogram if +], angiogram or autopsy) within 1 d of completing treatment; Safety: Major bleeding	or death]	No differences in primary, secondary or safety endpoints 12.6% HF pt had events. Primary: enoxaparin (9.7%) vs heparin (16.1%) [Cl -1.4 - +14.2], p=0.139. Secondary: mortality: enoxaparin 5.3% vs heparin 6.4% (no statistical comparison); Saftey: no difference (1 bleed in entire study population)
MEDENOX Samama 1999 <u>10477777;</u> Turpie 2000 <u>11206019;</u> Alikhan 2003 <u>12945875</u> (201)	Compare safety and efficacy of 2 doses of enoxaparin vs placebo to prevent VTE in medical pt hospitalized ≤14 d	Prospective, randomized, double-blind, parallel arm of placebo vs enoxaparin 20 mg/d vs enoxaparin 40 mg/d	Total N=855; f/u = 110 d	HF n=290 (34%)	NYHA III-IV	Contraindicated to anticoagulation or heparin, contrast allergy, thrombophilic disease or coagulopathy, Creat >1.7, mechanical ventilation, any AC for >48 h prior to enrollment	VTE (DVT [contrast venograpy or compression USG day 6-14 or earlier with symptoms], PE [high prob V/Q, CTA or angio] or both) d 1-14	VTE d 1-110; Major or minor hemorrhage, mortality, thrombocytopenia, any adverse event, lab abnormalities (multiple)	Enoxaparin 20 mg = Placebo (excluded from final analysis); lower incidence of radiographic DVT in enoxaparin 40 mg vs placebo. No difference in mortality or AEs among treatment groups. Primary: All HF pts: enoxaparin 4.0% vs placebo 14.6%, (RR: 0.29; 95% CI: 0.10- 0.84; p-0.02); Class III HF pts: enoxaparin 5.1% vs. placebo 12.3% (RR: 0.42; 95% CI: 0.13-1.29; p=0.20); Class IV HF pts: enoxaparin 0% vs. placebo 21.7%, (p=0.05); History of chronic HF as risk (regardless of admission diagnosis): enoxaparin 2.2% vs. placebo 12.1% (RR: 0.26; 95% CI: 0.08-0.92; n=0.04)

AC indicates anticoagulant; ACEI, angiotensin-converting-enzyme inhibitor; ACT, active control parallel; AE, adverse event; AP, apixaban; APT, antiplatelet therapy; AF, atrial fibrillation; ARB, angiotensin receptor blockers; AT, as treated; BID, twice a day; BNP, brain natriuretic peptide; CAD, coronary artery disease; CHF, congestive heart failure; CrCl, creatinine clearance; CTA, computed tomography angiography; CTR, cardiothoracic ratio; CV, cardiovascular; CXR, chest x-ray; Dab, dabigitran; DCM, dilated

cardiomyopathy; DVT, deep venous thrombosis; EF, ejection fraction; f/u, follow-up; H, heparin; HD, heart disease; HF, heart failure; HIT2, heparin-induced thrombocytopenia; H/N, hydralazine and nitrates; HTN, hypertension; ICH, ischemia; INR, international normalized ratio; ITT, intent to treat; KM, kaplan-meier; LMWH, low moleduclar weight heparin; LV, left ventricular; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; OAT, oral anticoagulant therapy; PCI, percutaneous coronary intervention; PE, pulmonary embolism; PPM, pacemaker; pt, patient; QoL; quality of life; RCT, randomized control trial; SQ, subcutaneous; TEE, thromboembolic event; TIA, transient ischemic attack; TID, three times a day; UFH, unfractionated heparin; USG, ultrasonography; VO2, oxygen volume; V/Q, ventilation/perfusion scan; and VTE, venous thromboembolic disease.

Data Supplement 22. Statin Therapy (Section 7.3.2.8.2)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient Population		Severity	Endr	points	Morta	lity	Trial Duration	Absolute Benefit	Statistical Results	Study Limitations
			Pretrial standard treatment	N (Total) n (Experimental) n (Control)	Ischemic/ Non- Ischemic	Inclusion Criteria	Exclusion Criteria	Severity of HF Symptoms	Primary Endpoint	Secondary Endpoint	Annualized Mortality	1st Year Mortality				
Horwich et al, 2004 <u>14975476</u> (202)	To investigate the impact of statin therapy in pts with advanced HF referred for transplant evaluation at UCLA.	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics	551; 248; 303	45%	Pts referred for transplant evaluation between 2000-2	LVEF >40%, baseline data incomplete	NYHA 3-4	Death or urgent transplant	N/A	N/A	75%	2 у	14%	HR 0.44; 95% CI 0.30-0.67; p<0.0001	Single-center, non- randomized, reason for drug use unclear, bias
Mozaffaria n et al, 2004 <u>15110204</u> (203)	To evaluate the relation of statin therapy with clinical outcomes in severe HF enrolled in the PRAISE study	Cohort study	ACEI/ARB, diuretics, digoxin	1,153; 1,019; 134	63%	Dyspnea or fatigue on exertion (NYHA 3b- 4), LVEF ≥30%	N/A	NYHA 3b-4	All-cause mortality	Cause- specific mortality (SCD, pump failure death, fatal MI)	29 deaths/100 person-y	N/A	Mean 1.5 y	N/A	HR: 0.38; 95% CI: 0.23-0.65; Propensity- matched HR: 0.46. 95% CI: 0.26–0.75	Post-hoc analysis from clinical trial

Ray et al, 2005 <u>15642876</u> (204)	To determine whether statin use is associated with a lower risk of death and major CVD among adults newly diagnosed as having HF in Ontario registry	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics, nitrates	28,828; 1,146; 27,682	11.3% history of MI	Adults aged 66 to 85 y in Ontario Canada newly hospitalized with primary diagnosis of HF between April 1, 1995, and December 31, 2001 and survived at least 90 d after the index HF hospitalizatio n	Pts hospitalize d within 36 mo for HF or having diagnosis of cancer within past 365 d prior to index HF hospitalizati on discharge date; dispensed statin 365 d prior to hospital discharge, length of stay >60 d, direct transfer to chronic care hospital, cancer within 90 d following index HF hospitalizati on	N/A	Death from any cause, nonfatal acute MI, or nonfatal stroke	N/A	9.9% per 100 person- y vs 19.1% per 100 person-y	N/A	16.6 mo in the statin group and 24.4 mo in the nonstatin group	8.2% per 100 person-y	HR: 0.62; 95% CI: 0.53-0.69; aHR: 0.72; 95% CI: 0.63-0.83.	Retrospective cohort study, non- randomized, reason for drug use unclear, bias
Foody et al, 2006 <u>16490817</u> (205)	To evaluate the association between statin use and survival among a national sample of elderly	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics, nitrates	54,960; 9,163; 45,797	30% history of MI	Sampling of Medicare fee-for- service beneficiaries hospitalized with a principal diagnosis of HF by ICD-9 code	<pre><65 y of age, HF readmissio ns, transferred out of the hospital, left AMA, or had unknown discharge</pre>	NYHA 2-4	All-cause mortality	N/A	20%	N/A	З у	N/A	HR: 0.62; 95%CI: 0.59–0.65; p<0.001 aHR: 0.80; 95%CI: 0.76–0.84; p<0.001	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

	Medicare beneficiarie s hospitalized with HF from National Heart Care Project.					between 4/98-3/99 and 7/00- 6/01.	disposition, died during hospitalizati on, had no date of death information available, hospitalize d outside the US, discharged to hospice, contraindic ations to statin therapy, including statin allergy or liver dysfunction , or no medication s recorded on									
Anker et al, 2006 <u>16846656</u> (206)	To assess the relationship between statin use and survival in ELITE-II as well as a 5- center registry	Cohort study	ACEI or ARB (as in ELITE-2), diuretics, digoxin	5,200; 1,103; 4,097	67%	ELITE-II: pts age ≥60 y; NYHA 2-4, LVEF ≥40%. European registry: diagnosis of HF followed by HF clinic	NR	NYHA 2-4	All-cause mortality	N/A	NR	12%	mean 1.5 y (ELITE- 2); 2 y (Europea n registry)	NR	ELITE-II: aHR 0.61; 95% CI: 0.44-0.84; p<0.0028 European registry: aHR 0.58; 95%CI adjusted 0.44-0.77; p<0.0001;	Retrospective cohort study and post-hoc analysis, sampling, non- randomized, reason for drug use unclear, bias

Folkeringa et al, 2006 <u>16520262</u> (207)	Investigate the effects of statins on survival in CHF pts using a matched case- controlled study in pts admitted to hospital because of severe CHF from the MARCH study	Case- control study	ACEI/ARB, diuretics, digoxin	524; 262; 262	50%	Pts admitted for HF with an uncomplicat ed survival for at least 1 mo after hospital discharge, group-wise matched between survivors and non- survivors on means of age, LVEF, renal function, and sex.	NR	NYHA 3-4	All-cause mortality	N/A	NR	NR	Mean 2.6 y	4%	OR: 0.42; 95% CI: 0.26–0.69	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias
Go et al, 2006 <u>17077375</u> (208)	To evaluate the association between initiation of statin therapy and risks for death and hospitalizati on among adults with chronic HF in the Kaiser Permanent e Chronic HF cohort	Cohort study	ACEI/ARB, diuretics, digoxin	2 4,598; 12,648; 11,950	54%	Adults (age ≥20 y) diagnosed with HF 1/96-12/04 with ≥1 hospitalizatio ns with a principal diagnosis of HF; ≥2 hospitalizatio ns with a secondary diagnosis of HF in which the principal diagnosis is cardiac- related; ≥3 hospitalizatio ns with secondary	Pts who were receiving statin therapy at the study at entry date; who were not eligible for treatment based on national guidelines	NYHA 2-4	Death from any cause and hospitaliz ation for HF	N/A	13.90%	NR	Median 2.4 y	NR	aHR: 0.76; 95%CI: 0.72-0.80	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

						diagnosis of HF; ≥2 outpatient diagnoses; ≥3 ED visit diagnoses; or ≥2 inpatient secondary diagnoses plus 1 outpatient diagnosis.										
Krum et al, 2007 <u>16960445</u> (209)	To examine statin/beta blocker interactions within the context of a large-scale clinical trial of pts with systolic CHF in CIBIS-II	Cohort study	ACEIs/ARB, beta- blockers,spironolac tone, diuretics	2,647; 220; 2,421	59%	Pts enrolled in CIBIS-II study	N/A	NYHA 2-4	Death	CV deaths included the following specific causes: sudden death, pump failure, MI and any other CV condition not listed above which led to the pt's death. Worsening HF only was counted as an outcome endpoint in CIBIS II when this (critical) event led to the hospitalizati	11.10%	NR	Mean 1.3 y	NR	HR 0.57; 95% CI: 0.37–0.94; aHR 0.60; 95% CI: 0.39–0.94	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

										on of the pt.						
Krum et al, 2007 <u>17049646</u> (209)	To assess the outcome of pts enrolled in Val- HeFT according to statin use at the time of randomizati on to valsartan or placebo.	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics	5,010; 1,602; 3,408	57%	Pts enrolled in Val-HeFT study	N/A	NYHA 2-4	All-cause mortality	Mortality and morbidity (cardiac arrest with resuscitatio n, hospitalizati on for HF, or administrati on of IVinotropic or vasodilator drugs for 4 h or more without hospitalizati on)	7.90%	NR	Mean 1.9 y	7.20%	HR 0.81: 95%Cl 0.70– 0.94; p=0.005	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias
Dickinson et al, 2007 <u>17383296</u> (210)	To examine the effects of statin in reducing mortality in SCD-HeFT	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics	2,521; 965; 1,556	52%	Ischemic and non- ischemic cardiomyopa thy, NYHA 2-3 HF, LVEF 35% or less	N/A	NYHA 2-3	All-cause mortality	N/A	6.80%	NR	Mean 3.8 y	NR	aHR 0.7; 95% CI: 0.57-0.83	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

CORONA, Kjekshus et al, 2007 <u>17984166</u> (211)	To investigate the beneficial effects of rosuvastati n on improving survival, reducing morbidity, and increasing well-being in pts with chronic, symptomati c, systolic, ischemic HF.	RCT	ACEI/ARB, beta- blockers, spironolac tone, diuretics	5,011; 2,497; 2,514	100%	Age ≥18, symptomatic HF NYHA 2- 4, IHD, LVEF <40%, does not need statin therapy, optimal medical therapy >2 wk	Myopathy or hypersensti vity to statin, ACS or revasculari zation <1 mo, reduced life expectancy , planned surgery <3 mo, Cr >2.5 mg/dL, ,CK >2x ULN, LFTs >1.5x ULN, uncorrecte d valve or HCM	NYHA 2-4	Composit e of death from cardiovas cular causes, nonfatal MI, and nonfatal stroke	Death from any cause, any coronary event (sudden death, fatal or nonfatal MI, PCI or CABG, ventricular defibrillatio n by an ICD, resuscitatio n after cardiac arrest, or hospitalizati on for UA), death from CV causes (with an additional analysis of cause- specific death from a CV cause), and the number of hospitalizati ons for CV causes, unstable angina, or worsening HF	11%	NR	Median 2.7 y	0.9% per 100 patient-y	HR: 0.92; 95% CI: 0.83-1.02; p=0.12	N/A
GISSI-HF, Tavazzi et al, 2008 18757089	investigate the effi cacv and	RCI	ACEI/ARB, beta- blockers,spironolac tone, diuretics	4,574; 2,285; 2,289	42% history of MI	≥18, symptomatic HF NYHA 2- 4, if LVEF	Hypersenst ivity to statin, investigatio	NYHA 2-4	Co- primary endpoint: time to	Death for a CV cause; first hospital	7.90%	NK	Median 3.9 y	-1%	HR: 1.02 99% CI: 0.923-1.130; p=0.594	N/A

(212)	safety of	>40% (10%)	nal drug <1	death;	admission	aHR: 1.01;	
	the statin	requires HF	month, MI	time to	for any,	99% CI	
	rosuvastati	hospitalizatio	<6 mo,	death	CV, or HF	0.908-1.112,	
	n in pts with	n within 12	ACS or	or	cause; and	p=0.903;	
	HF.	mo	revasculari	admission	the		
			zation <3	for	combined		
			mo,	cardiovas	outcome		
			reduced life	cular	measure of		
			expectancy	reasons	CV death		
			. planned		or		
			surgery/dev		admission		
			ice <3 mo.		to hospital		
			Cr >2.5		for any		
			ma/dL.		cause		
			LFTs >1.5x				
			ULN.				
			pregnant				

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; AMA, against medical advice; ARB, angiotensin receptor blocker; CABG, coronary artery bypass surgery; CHF, congestive heart failure; CIBIS-II, The Cardiac Insufficiency Bisoprolol Study II; CORONA, Controlled Rosuvastatin Multinational Trial in HF; CV, cardiovascular; ELITE-II, Losartan Heart Failure Survival Study; HF, heart failure; GISSI-HF, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico; ICD, implantable cardioverter defibrillator; ICD-9, international classification of diseases 9th edition; IHD, ischemic heart disease; LVEF, left ventricular ejection fraction; MARCH, Maastricht Registry of Congestive HF; MI, myocardial infarction; N/A, not applicable, NR, not reported; NYHA, New York Heart Association; PCI, Percutaneous coronary intervention; PRAISE, Prospective Randomized Amlodipine Survival Evaluation; SCD, sudden cardiac death; SCD-HeFT, Sudden Cardiac Death in Heart Failure Trial; UA, unstable angina; UCLA, University of California Los Angelos; and Val-HeFT, Valsartan Heart Failure Trial.

Data Supplement 23. Omega 3 Fatty Acids (Section 7.3.2.8.3)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient F	Population	Seve	erity	End	points	Morta	ality	Trial Duratio n	Statistical Anaylsis (Results)	Study Limitations	Complications/ Adverse Events
				N (Total) n (Experimental) n (Control)		Inclusion Criteria	Exclusion Criteria	Severit y of HF Sympt oms	<i>Study</i> <i>Entry</i> <i>Sverity</i> <i>Criteri</i> <i>a</i>	Primary Endpoint	Secondary Endpoint	Annualized Mortality	1st Year Mortality				
GISSI-HF,	То	Randomis	All treatments	7,046; 3494;	49.6%	≥18 y,	Specific	Class II	NYHA	2 co-	Cardiovasc	7%	7.0%	4.5 y,	1.8% absolute mortality	By the end	The rate of pts
Lancet	investigate	ed,	of proven	3,481 (placebo)	ischemic/5	clinical	indication or	63%, III	Class	primary	ular		(estimate	median	reduction (95% CI 0·3–	of the study,	who had
2008	whether	double-	efficacy for		0.4% non-	evidence of	contraindicati	34%, IV	II-IV	endpoints	mortality,		d from KM	f/u 3.9 y	3.9%). Absolute benefit	1004 (29%)	permanently
<u>18757090</u>	omega-3	blind,	chronic HF		ischemic-	HF of any	on to n-3	3%	HF	: time to	cardiovasc		curves)		for mortality or	of pts in the	discontinued
(213)	fatty acid	placebo-	(eg, ACEIs,		other	cause	PUFA; known			death,	ular				admission for	omega 3 FA	taking the study
	supplement	controlled	beta blockers,			classified as	hypersensitivi			and time	mortality or				cardiovascular reasons	group and	drug because of
	ation could	trial (2x2,	diuretic drugs,			the ESC GL	ty to study			to death	admission				was 2·3% (95% CI 0·0–	1029 (30%)	adverse reactions
	improve	factorial	italis,			NYHA class	treatments;			or	for any				4.6%). NNT for benefit	in the	was much the
	morbidity	design,	spironolacton			II–IV,	presence of			admissio	reason,				is 56 pts need to be	placebo	same in the
	and	rosuvastat	e) were			provided that	any non-			n to	sudden				treated to avoid 1death	group were	omega 3 FA and
	mortality in	in)	positively			LVEF was	cardiac			hospital	cardiac				and 44 pts treated to	no longer	in the placebo
ĺ	a large		recommende			measured	comorbidity			for	death,				avoid 1event like death	taking study	groups (102 [3%]

	population of pts with symptomati c HF of any cause.		d. Background treatment rates of ACEI/ARB 93%, beta blockers 65%, aldosterone antagonists 40%, loop durietics 90%			within 3 mo before enrollment. When LVEF was >40%, the pt had to have been admitted at least 1 hospital for HF in the preceding y to meet the inclusion criteria.	(eg, cancer) incompatible with a long f/u; treatment with any other investigationa I agent within 1 mo before randomisatio n; ACS or revascularisat ion procedure within the preceding 1 mo; planned cardiac surgery, expected to be done within 3 mo after randomisatio n; significant liver disease; and pregnant or lactating women of childbearing potential who were not adequately protected against becoming porenant.		cardiovas cular reasons.	admission for any reason, admission for cardiovasc ular reasons, admission for HF, MI, and stroke.				or admission for cardiovascular reason for nearly 4 y. Mortality: aHR: 0·91; 95·5% CI 0·833–0·998; p=0·041. Mortality or were admitted to hospital for cardiovascular reasons (aHR: 0·92; 99% CI 0·849–0·999; p=0·009). Mortality: aHR 0.91 Mortality of CV Hospitalization aHR 0.92	drug for various reasons. Only evaluated a single dose. Study conducted in Italy where there is relatively high amount of dietary intake of omega 3 fatty acids. (p=0·45; table 5).	vs 104 [3%], p=0·87). Very well tolerated. No safety issues other than a slight excess of cerebrovascular events, which was a similar finding to that reported in the GISSI- Prevenzione trial. This excess was distributed fairly evenly between ischaemic and haemorrhagic cases. No drug interactions noted. with gastrointestinal dis turbance being the most frequent cause in both groups (table 5).
GISSI- Preventio n, Macchia A et al. EJHF 2005 (subgroup analysis) <u>16087142</u> (214)	To evaluate the effect of omega 3 fatty acid supplement ation in post MI pts with LVD.	Randomiz ed, multicente r, open- label, clinical trial with blinded validation of events.	Standard background therapy for pts who are post AMI	11323 pts ; 4324 (with LVEF ≤50%)	100% ischemic	Patient with AMI in prior 3 mo. Irrespective of LV function. No age limits.	Contraindicati ons to the dietary supplements (ie, known allergy to omega-3 fatty acids). Unfavorable short-term outlook (eq.	No HF or NYHA Class I, subgrou p analysis in pts with LVEF ≤50%	Time to death, and time to death or admissio n to hospital for cardiovas cular	Sudden death	4% per y	4%	3.5 у	Treatment with n-3 PUFA reduced total mortality in pts with and without systolic dysfunction, 24% (40%- 4%, p =0.02) and 19% (41% to +10%, p =0.17), respectively (heterogeneity test p=0.55). The effect on SD	Open label. Excluded pts with over HF.	Well tolerated.

		Subgroup analysis of those pts with post MI LVD					overt CHF, cancers, etc).			reasons					reduction was asymmetrical, with a greater effect in pts with LVSD (RRR: 58%; 95% CI: 74%-33%; p =0.0003) as compared to pts with preserved systolic function (RRR: 11%; 95% CI: 54% - 69%; p =0.71), although the heterogeneity test was not statistically significant (p=0.07). LVD subgroup (0.60– 0.96) p=0.02) RR 0.76 (subgroup with LVD)		
Omega 3 fatty acids in DCM, Nodari, JACC, 201 <u>21215550</u> (215)	This study was designed to test the effects of 3 PUFAs on (LV) systolic function in chronic HF due to NICM	Randomiz ed, single center double blind, clinical trial with blinded validation of events. Subgroup analysis of those pts with post MI LVD	Evidence based HF therapy ACE/ARB 100%, beta blockers 100%, aldosterone antagonists 60%, loop diuretics 100%	133; 67 experimental; 66 control	100% non- ischemic	Pts aged 18- 75 y with a diagnosis of NICM, LVSD (defined as an EF <45%), and stable clinical conditions with minimal or no symptoms for at least 3 mo on evidence- based medical treatment at maximum tolerated target doses for at least 6 mo.	presence of symptoms or evidence of CAD diagnosed through noninvasive tests, PAD, presence of congenital or primary VHD, persistent AF, inability to perform bicycle ergometry for noncardiac causes, moderately severely reduced functional capacity, NYHA class IV, poor acoustic windows limiting the ability to assess echo	Mild, Class I, 15%, Class II 85%.	Mild severit y on medica I therapy	Change in LVEF	Peak V02, hospitalizat ions	0%	0%	12 mo	LVEF increased by 10.4% n-3 PUFA and decreased by 5.0% with placebo, p<.0001, peak VO2 (increased by 6.2% and decreased by 4.5%, respectively); exercise duration increased by 7.5% and decreased by 4.8%; and mean NYHA class decreased from 1.88 +/- 0.33 to 1.61 +/- 0.49 and increased from 1.83 +/- 0.38 to 2.14 +/- 0.65. The hospitalization rates for HF were 6% in the n-3 PUFAs and 30% in the placebo group (p = 0.0002).	Single center, small, no deaths.	None

I
I
1
ł
I
ł
I
ł
I
I
I
I
I
ł
ł
I
I
I
ł
I
I

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; AMI, acute myocardial infarction; ARB, angiotensin receptor blocker; CAD, coronary artery disease; CV, cardiovascular; EF, ejection fraction; eGFR, estimated glomerular filtration rate; ESC GL, European Society for Cardiology guidelines; f/u, follow-up; GISSI-HF, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico; HF, heart failure; KM, Kaplan-Meier; LVD, left ventricular dysfunction; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; MI, myocardial infarction; NICM, nonischemic cardiomyopathy; NNT, number needed to treat; NYHA, New York Heart Association; PAD, peripheral arterial disease; PUFA, polyunsaturated fatty acids; SD, sudden death

Data Supplement 24. Antiarrhythmic Agents to Avoid in HF (7.3.2.9.2)

		Stu	udy			Study Drug	J Effect		
Trials	Design	Drug	Control	Patients	Mortality	CV events	Functional Capacity	QoL	Other Comments
Class I Na Channel Blocke	er								
CAST <u>2473403</u> (216)	RCT	Encainide/ Flecainide/ Moricizine	Р	Post-MI NSVT	↑ with encainide, flecainide RR 2.5	N/A	N/A	N/A	Study terminated early.
Class III K Channel Blocke	rs								
SWORD <u>8691967</u> (217)	RCT	d-Sotalol	Р	Post-MI LVEF <u><</u> 40%	↑ RR 1.65	N/A	N/A	N/A	Study terminated early.

Dronedarone Study Group 18565860 (218)	RCT	Dronedarone	Р	NYHA II-IV LVEF <u><</u> 35% hospitalized	↑ HR 2.13	↑ first CV hospitalizations	N/A	N/A	No difference in primary composite endpoint.	
CAST indicates Cardias Arehythmic Suppression Trials (2)/ applications (K, astassium) IV/F, left ventricular signification, M, mysecretical inferences, No. and ium, NS//T, astassium, IV/F, astas										

CAST indicates Cardiac Arrhythmia Suppression Trial; CV, cardiovascular; K, potassium; LVEF, left ventricular ejection fraction; MI, myocardial infarction; Na, sodium; NSVT, nonsustained ventricular tachycardia; N/A, not applicable; NYHA, New York Heart Association; P, placebo; QoL, quality of life; RCT, randomized control trial; and SWORD, Survival With Oral d-Sotalol.

Data Supplement 25. Calcium Channel Blockers to Avoid in HF (Section 7.3.2.9.3)

			Study		î	Study Drug E				
Trials	Design Drug		Control Patients		Mortality	CV events	Functional Capacity QoL		Other Comments	
Nondihydropyridine										
MDPIT <u>2899840</u> (219)	RCT	Diltiazem	Р	Post-MI	NS	↑ In pts with LVEF<40% or pulm congestion on CXR HR 1.41	N/A	N/A	None	
MDPIT <u>1984898</u> (220)	Retro	Diltiazem	Р	Post-MI		↑ HF in pts with EF<40%, pulm congestion, or anterolateral Q wave MI	N/A	N/A	None	
DiDi <u>8759075</u> (221)	RCT	Diltiazem	Ρ	Idiopathic DCM NYHA II-III	NS	N/A	N/A	N/A	18% of pts did not finish study. No difference in transplant-free survival (85.2% vs. 80.4%, p=0.44).	
DAVIT-II <u>2220572</u> (222)	RCT	Verapamil	Р	Hospitalized for AMI	NS	N/A	N/A	N/A	HF pts had worse outcomes	
Dihydropyridine	1		li	1	1					
Elkayam U <i>Circulation</i> 1990 <u>2242521</u> (223)	RCT	Nifedipine	ISDN	NYHA II-III LVEF <40%	N/A	↑ HF hospitalization (nifedipine vs ISDN) ↑ worsening HF (nifedipine+ISDN vs either alone)	NS	N/A	None	
Felodipine UK Study Group 7786657	RCT	Felodipine	Р	NYHA II-III LVEF <u><</u> 40% 76% ICM	N/A	↑ worsening HF	NS	N/A	None	

(224)									
V-HeFT III <u>9264493</u> (225)	RCT	Felodipine	Р	NYHA II-III LVEF <u><</u> 45% 55% ICM	NS	NS	NS	NS	More edema AE with felodipine. Not powered to study mortality.
PRAISE-2* <u>15921795</u> (226)	RCT	Amlodipine	Р	NICM NYHA III-IV LVEF<30%	NS	NS	N/A	N/A	None
Amlodipine Exercise Trial <u>10689266</u> (227)	RCT	Amlodipine	Р	NYHA II-IV LVEF <u><</u> 35% 53% ICM	N/A	N/A	NS	NS	None

AE indicates adverse event; AMI, acute myocardial infarction; CV, cardiovascular; CXR, chest x-ray; DAVIT-II, Danish Verapamil Infarction Trial II; DCM, dilated cardiomyopathy; DiDi, Diltiazem in Dilated Cardiomyopathy Trial; EF, ejection fraction; HF, heart failure; HR, hazard ratio; ICM, ischemic cardiomyopathy; ISDN, isosorbide dinitrate; LVEF, left ventricular ejection fraction; MDPIT, Multicenter Diltiazem Postinfarction Trial; MI, myocardial infarction; NICM, nonishemic cardiomyopathy; N/A, not applicable; NS, no statistically significant difference; NYHA, New York Heart Association; P, placebo; PRAISE-II, second Prospective Randomized Amlodipine Survival Evaluation; pts, patients; QoL, quality of life; RCT, randomized control trial; Retro, retrospective analysis; UK, United Kingdom; and V-HeFT, Vasodilator-Heart Failure Trial.

		Study	y				
Cohort Populations	Design	Design Experimental (n)		Patients	Mortality	CV events	Other Comments
Netherlands PHARMO 9605782 (228)	Obs	NSAID plus Diuretics	Diuretics alone	Age <u>></u> 55 y	N/A	↑ HF hospitalization aRR 1.8	Data presented in pt-y
New South Whales <u>10737277</u> (229)	Case- controlled cohort	HF admission (365)	Non-HF admission (658)	Mean age 76 y	N/A	↑ HF admission with non-ASA NSAID use OR 2.1 ↑1 st HF admission in pts with h/o heart disease and NSAID use vs no h/o heart disease and NSAID use	None
Rotterdam Study <u>11822918</u> (230)	Cohort	No history of HF admission (7277)	None	Age <u>></u> 55 y FS>30%	N/A	↑ HF readmission during concurrent use of NSAID aRR 9.9	None
Ontario Drug Benefit Program <u>15172772</u> (231)	Retro Cohort	Rofecoxib (14,583) Celecoxib (18,908) Non-selective NSAID (5,391)	No NSAID (100,000)	Age <u>≥</u> 66 y 12% IHD	N/A	↑ HF hospitalization relative to non-NSAID users Rofecoxib aRR 1.8 NS NSAID aRR 1.4	No increased risk seen with celecoxib relative to non-NSAID users
Quebec <u>15947399</u> (232)	Retro Cohort	Rofecoxib (869) Non-selective NSAID (280)	Celecoxib (717)	Age <u>></u> 66 y Index HF admission	↑ NS NSAID HR 1.54 Rofecoxib HR 1.44	↑Recurrent HF ER visit or hospitalization NS NSAID HR 1.21 (0.92-1.6) Rofecoxib HR 1.17 (0.96-1.42)	Combined endpoint significant risk with NS NSAID and rofecoxib

Data Supplement 26. NSAIDs Use in HF (Section 7.3.2.9.4)

 $\ensuremath{\mathbb{C}}$ American College of Cardiology Foundation and American Heart Association, Inc.

Danish National Patient	Retro	Rofecoxib (6116)	No NSAID	Age <u>></u> 30 y	1	↑HF hospitalization	Increased risk with higher doses
Registry	Cohort	Celecoxib (5734)	(70738)	Index HF	Rofecoxib HR 1.7	Rofecoxib HR 1.4	of NSAIDs for all types
<u>19171810</u>		Ibuprofen (16875)		admission	Celecoxib HR 1.75	Celecoxib HR 1.24	
(233)		Diclofenac (9377)		13% h/o MI	Ibuprofen HR 1.31	Ibuprofen HR 1.16	
		Naproxen(2176)			Diclofenac HR 2.08	Diclofenac HR 1.35	
		Other NSAID			Naproxen HR 1.22	Naproxen HR 1.18	
		(11488)			Other HR 1.28	Other NSAID HR 1.27	

aRR indicates adjusted relative risk; ASA, aspirin; ER, emergency room; FS, fractional shortening; HF, heart failure; h/o, history of; IHD, HR, hazard ratio; ischemic heart disease; MI, myocardial infarction; N/A, not applicable; NS, not statistically significant; NSAID, non-selective nonsteroidal anti-inflammatory drug; Obs, observational study; OR, odds ratio; pt-y, patient years; and Retro, retrospective analysis.

Data Supplement 27. Thiazolidinediones in HF (Section 7.3.2.9.5)

			Study	,	Results			
Cohort /Trial	Design Experimental (n)		Control (n)	Patients	Mortality	CV events		
Pharmetrics Integrated Outcomes Database <u>14578227</u> (234)	Retro Cohort	TZD (5441)	No TZD (28,103)	No HF Age >18 y DM II oral hypoglycemic agent	N/A	↑ incidence of HF TZD HR 1.7		
PROactive <u>16214598</u> (235)	RCT Pioglitazone (2065)		Placebo (2633)	NYHA I HF Age 35-75 y DM II Macrovascular disease	NS	↓ Composite all-cause mortality, non-fatal MI, and CVA HR 0.84 95% CI 0.72-0.98; p=0.27 ↑ HF events		
Dargie HJ <i>JACC</i> 2007 <u>17448371</u> (236)	RCT	Rosiglitazone (110)	Placebo (114)	NYHA I-II HF LVEF ≤45% DM II oral hypoglycemic agent	NS	N.S.		
Lipscombe LL <i>JAMA</i> 2007 <u>18073359</u> (237)	Retro Cohort	TZD	Other oral hypoglycemic	Age <u>></u> 66 y DMII oral hypoglycemic agent	↑ RR 1.29 95% CI 1.02-1.62; p=0.03	↑ HF adjusted RR 1.60 95% CI 1.21-2.10; p<.001 ↑ AMI RR 1.40 95% CI, 1.05-1.86; p=.02		
RECORD <u>19501900</u> , <u>20118174</u> (238,239)	RCT	Rosiglitazone add- on (2220)	MET and SU (2227)	No HF DMII oral MET or SU	NS	↑ HF HR 2.1 95% CI 1.35-3.27, p=0.001 ↔ AMI HR 1.14 95% CI 0.8-1.63, p=0.47		

Giles TD Congestive Heart Failure 2010 20557330	e RCT	Pioglitazone (151)	Glyburide (149)	NYHA I Mild cardiac disease DM II	NS	NS exercise capacity, HbA1c
(240)						

AMI, acute myocardial infarction; CVA, cerebral vascular accident; DM II, type 2 diabetes mellitus; HbA1c, hemoglobin A1c; HF, heart failure; HR, hazard ratio; LVEF, left ventricular ejection fraction; MET, metformin; MI, myocardial infarction; N/A, not applicable; NS, no statistically significant difference; NYHA, New York Heart Association; PROactive, Prospective pioglitazone Clinical Trial In Macrovascular Events;RCT, randomized control trial; RECORD, Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes; Retro, retrospective analysis; RR, relative risk; SU, sulfonylurea; and TZD, thiazolidinediones.

Data Supplement 28. Device-Based Management (Section 7.3.4)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Population	Endpoints		Statistical Analysis (Results)	Study Limitations
					Primary Endpoint	Secondary Endpoint		
COMPASS, Bourge et al. 2008 JACC <u>18342224</u> (241)	Determine impact of clinician knowing continuous ambulatory right heart pressures	Single blind RCT	274	Class III-IV with hospitalization/6 mo, all EF	HF events	HF hospitalization (post hoc)	Failed primary, with 21% reduction (p=0.33). HF hospilization 36% reduction (HR: 0.64: p=0.03)	Both groups high clinical contact (0.95/wk). No protocol for response to information.
COMPASS –Diastolic HF, substudy. Zile, 2008 J Cardiac Fail <u>19041044</u> (242)	Determine impact of clinician knowing continuous ambulatory right heart pressures	RCT	70	Class III-IV, EF ≥50%	HF events	N/A	20% reduction (p=0.66). HF hopsitlization 29% reduction (p=0.43)	Both groups high clinical contact (0.95/wk). No protocol for response to information. Small subgroup.
REDUCE-HF Adamson,Congestive Heart Failure 2011 <u>21906250</u> (243)	Determine impact of clinician knowing and acting on home pressures	Single blind RCT	400 of 1200 (target)	Class II/III	HF events	N/A	No trend for benefit	Trial stopped for anticipated lead problems
SENSE-HF Conraads 2011 Eur J Echo <u>21362703</u> (244)	Determine predictive value of impedance changes	Observational, Doubleblinded Phase I, unblinded Phase II	501	N/A	Predictive value of impendance changes	N/A	PPV for HF hosp increased from 4.7 to 38% during study	N/A
FAST Abraham 2011 Cong H Fail <u>21449992</u> (245)	Compare impedance Changes to daily weights for monitoring	RCT (Pts and study team blinded to impedance data)	156	Class III-IV With ICD or CRT, LVEF ≤35%	Number of threshold changes associated with HF event within 30 d	N/A	Greater sensitivity for impedance than daily weights: 76% vs 23% (p=0.001) Unexplained change rate 1.9 vs 4.3/pt-y. 1 in 7 impedance changes associated with	Weight changes defined as 3 lbs/1 d or 5 lbs in 3 d. Unknown relationship of weight changes to therapy change
							event (p=0.0001)	
---	--	---	-----	---	------------------------	--	---	---
CHAMPION Abraham Lancet 2011 <u>21315441</u> (246)	Determine impact of PAP information from wireless monitor	Single blind RCT	550	Class III HF and hospitalized in past y	HF hospitilizations	AUC 6 mo PAP, % admitted DAOH, MLHF	39% reduction in HF hospitalizations (HR: 0.7; p=0.0001), More reduction in PAP (p=0.008), Lower % pts with HF hospitalizations (HR: 0.7; p=0.02), DAOH, (p=0.02), Better MLHF (p=0.02)	7 procedure-related SAEs
CHAMPION EF ≥40% <u>21315441</u> (246)	Determine impact of PAP information from wireless monitor	Single blind RCT	119	Class III HF and hospitalized in past y	HF hospitilizations	N/A	HF hosp reduced from 0.33 to 0.16 (p=0.0001)	Subgroup small, same trend
HOMEOSTASIS Ritzema, Circulation 2011 <u>20176990</u> (247)	Feasibility study of daily LAP monitoring to inform pt-directed therapy	Open-label Registry, uncontrolled	40	Class III-IV; hospitalized in past y all EF	N/A	N/A	LAP declined 17.6 to 14.8 (p=0.0003); % over 15 declined 67% (p=0.001) Beta blocker/ACE-I doses increased 40/37% (p=0.001) Loop doses decreased 27% (p=0.15)	Pilot observational, no controls. key concepts: physiology reduce diuretics. Pt responsibility
DOT-HF trial, <u>21931078</u> [5816 /id}	Determine impact of knowing impedance information	Single blind RCT	N/A	N/A	N/A	N/A	Monitoring increased hospilizations, clinic visits, No decrease in mortality	N/A

AUC, area under the curve; CHAMPION, CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients; COMPASS-HF, Chronicle Offers Management to Patients with Advanced Signs and Symptoms of Heart Failure; CRT, cardiac resynchronization therapy; DOT-HF, Diagnostic Outcome Trial in Heart Failure; EF, ejection fraction; FAST, Fluid Accumulation Status Trial; HF, heart failure; HOMEOSTASIS; Hemodynamically Guided Home Self-Therapy in Severe Heart Failure Patients; ICD; implantable cardioverter-defibrillator; LAP, left atrial pressure; lbs, pounds; LVEF, left ventricular ejection fraction; MLHF, Minnesota Living with Heart Failure Questionnaire; N/A, not applicable; PAP, pulmonary artery pressure; PPV, positive predictive value; pt, patient; pt-y, patient years; RCT, randomized control trial; REDUCE-HF, Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients With Chronic Heart Failure; SAE, serious adverse event; SENSE-HF, Sensitivity of the InSync Sentry feature for the Prediction of Heart Failure.

Data Supplement 29. CRT (Section 7.3.4.2)

Study Name, Author, Year	Aim of Study	Study Type	Patient Population - N (total) n (experimental) n (control)	Follow-Up (mo)	Baseline Treatment	NYHA Class	EF (%)	QRS durati on (ms)	Exclusion Criteria	QRS Subgroups by duration (ms)	Composite Endpoint (for QRS subgroups)	Results
COMPANION	Aim of trial was to	RCT	1520; 617;	16.2 (CRT),	ACE-ls, beta	3 or 4	<u><</u> 35	<u>></u> 120	non- randomized	120-147 (n	All cause	CRT with a pacemaker decreased
N Engl J Med	compare optimal		medical therapy*:	11.9 (medical)	blockers, and				 no-CRT control group 	324); 148-	mortality or	the risk of the primary end point
2004;350:214	pharmacologic		308;		spironolactone				 enabled ICD 	*168 (n 314);	hospitalizations	(HR:
0-50.	therapy plus CRT		pacemaker-						implantation only in one	>168 (n 287)		0.81; p=0.014),
<u>15152059</u>	with a pacemaker,		defibrillator: 595						study arm only			CRT with a pacemaker–defibrillator
(248)	optimal								 cross-over study design 			decreased the risk of the primary
	pharmacologic								 did not report the 			endpoint (HR: 0.80; p=0.01)
	therapy plus CRT								clinical outcomes of			

	with a pacemaker– defibrillator, and optimal pharmacologic therapy alone in a population with advanced HF and intraventricular conduction delays.								interest • reported clinical outcomes without any relation to specific limited QRS ranges			Risk of the combined endpoint of death from or hospitalization for HFwas reduced by 34% in the pacemaker group (p<0.002) and by 40% in the pacemaker–defibrillator group (p<0.001 for the comparison with the pharmacologic-therapy group). Pacemaker reduced the risk of the secondary endpoint of death from any cause by 24% (p=0.059), and a pacemaker–defibrillator reduced the risk by 36% (p=0.003).
CARE-HF N Engl J Med 2005;352:153 9-49. <u>15753115</u> (249)	To analyze the effects of cardiac resynchronization on the risk of complications and death among pts who were receiving standard medical therapy for moderate or severe HF and cardiac dyssynchrony.	RCT	813; 409; medical therapy*: 404	29.4	ACE-Is, beta- blockers, and spironolactone	3 or 4	<u><</u> 35	<u>></u> 120	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	120-159 (n 290); >159 (n 505)	All cause mortality or hospitalizations for major CV event including HF hospitalization	Primary endpoint was reached by 159 pts in the cardiac- resynchronization group, as compared with 224 pts in the medical-therapy group (39 % vs. 55%; HR: 0.63; 95 % CI: 0.51-0.77; p<0.001). There were 82 deaths in the cardiac-resynchronization group, as compared with 120 in the medical-therapy group (20% vs. 30%; HR: 0.64; 95 %CI: 0.48-0.85; p<0.002). As compared with medical therapy, cardiac resynchronization reduced the interventricular mechanical delay, the end-systolic volume index, and the area of the mitral regurgitant jet; increased the LVEF; and improved symptoms and the QoL (p<0.01 for all comparisons).

REVERSE <u>19038680</u> (223)	To determine the effects of CRT in NYHA functional class II HF and NYHA functional class I (ACC/AHA stage C) pts with previous HF symptoms.	RCT	610; 419; CRT-off : 191	12	ACE-Is, beta blockers, and spironolactone	1 or 2	<u><</u> 40	≥120	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	120-151 (n 303); >151 (n 307)	All cause mortality or HF hospitalization or worsened HF resulting in cross-over or drop-out worsened NYHA class or moderately or markedly worsened HF symptoms	The HF clinical composite response endpoint, which compared only the percent worsened, indicated 16% worsened in CRT-ON compared with 21% in CRT-OFF (p =0.10). Pts assigned to CRT-ON experienced a greater improvement in LV end-systolic volume index (-18.4 + 29.5 ml/m2 vs1.3 +23.4 ml/m2, p < 0.0001) and other measures of LV remodeling. Time-to-first HF hospitalization was significantly delayed in CRT-ON (HR: 0.47; p=0.03).
MADIT-CRT <u>19723701</u> (250)	Aim of trial was to determine whether CRT with biventricular pacing would reduce the risk of death or HF events in pts with mild cardiac symptoms, a reduced EF, and a wide QRS complex.	RCT	1800 1089 medical therapy*: 731	28.8	ACE-Is, beta- blockers, and spironolactone	1 or 2	<u><</u> 30	≥130	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	130-149 (n 645); >149 (n 1175)	All cause mortality or HF event (HF hospitalization or outpatient intravenous diuretic therapy)	Primary end point occurred in 17.2% of the CRT–ICD group and in 25.3% of the ICD-only group. CRT–ICD group HR: 0.66; 95% CI: 0.52-0.84; p=0.001. The benefit did not differ significantly between pts with ischemic cardiomyopathy and those with nonischemic cardiomyopathy. CRT superiority was driven by a 41% reduction in the risk of HF events evident primarily in a prespecified subgroup of pts with a QRS duration ≥150 msec. CRT was associated with a significant reduction in LV volumes and improvement in the EF. There was no significant difference between the two groups in the overall risk of death, with a 3% annual mortality rate in each treatment group. SAEs were infrequent in the 2 groups.

RAFT 21073365 (251)	Aim of trial was to evaluate whether adding CRT to an ICD and optimal medical therapy might reduce mortality and morbidity among such pts.	RCT	1800; 894; No CRT: 904	40	ACE, beta- blockers, and spironolactone	2 or 3	<u><</u> 30	<u>≥</u> 120	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	120-149 (n 627); >149 (n 1036)	All casue mortality or HF hospitalization	Primary outcome occurred in 33.2% in the ICD–CRT group and 40.3% in the ICD group; ICD–CRT group HR: 0.75; 95% CI: 0.64- 0.87; p<0.001. In the ICD–CRT group, 186 pts died, as compared with 236 in the ICD group (HR: 0.75; 95% CI: 0.62-0.91; p=0.003), and 174 pts were hospitalized for HF, as compared with 236 in the ICD group (HR: 0.68; 95% CI: 0.56- 0.83; p<0.001). 30 d after device implantation, AEs had occurred in 124 pts in the ICD-CRT group, as compared with 58 in the ICD group (p<0.001).
PROSPECT Circulation. 2008;117: 2608-2616. <u>18458170</u> (252)	Aim of trial was to evaluate selected, predefined baseline echocardiographic parameters for their ability to predict clinical and echocardiographic response to CRT.	prospecti ve, multicent er, nonrand omized study (observat ional)	498-enrolled; 467-implanted; Not applicable	6	Medical therapy, unless contraindicated, was to include an ACE-I or ARB for at least 1 mo before enrollment and a beta blocker started at least 3 mo before and unchanged for at least 1 mo before enrollment	3 or 4	<u><</u> 35	<u>≥</u> 130	N/A	N/A	12 echocardiograp hic parameters of dyssynchrony, based on both conventional and tissue Doppler-based methods, were evaluated after site training in acquisition methods and blinded core laboratory analysis.	Clinical composite score was improved in 69% of 426 pts, whereas LV end-systolic volume decreased ≥15% in 56% of 286 pts with paired data. The ability of the 12 echo parameters to predict clinical composite score response varied widely, with sensitivity ranging from 6%- 74% and specificity ranging from 35%- 91%; for predicting LVESV response, sensitivity ranged from 9%-77% and specificity from 31%-93%. For all the parameters, the area under the ROC curve for positive clinical or volume response to CRT was ≤0.62. There was large variability in the analysis of the dyssynchrony parameters.
CONNECT J Am Coll Cardiol 2011;57:1181 –9	To determine if wireless remote monitoring with automatic clinician alerts reduces the	multicent er, prospecti ve, randomiz	1,997 REMOTE ARM: 1014 All automatic clinician alerts	15	N/A	Inclusion criteria: 1) being able and willing to replace	N/A	N/A	permanent AF chronic warfarin therapy previous ICD, CRT device, or pacemaker age <18 y	N/A	N/A	The median time from clinical event to clinical decision per pt was reduced from 22 d in the in-office arm to 4.6 d in the remote arm (p<0.001). The health care

<u>21255955</u>	time from a clinical	ed	were enabled for			regularly			having a life expectancy			utilization data revealed a
(252)	event to a clinical	evaluatio	pts in the remote			scheduled			<15 mo			decrease in mean length of stay
	decision in	n	arm. Audible pt			in-office						per CV hospitalization visit from 4.0
	response to		alerts were			follow-ups						d in the in-office arm to 3.3 d in the
	arrhythmias, CV		disabled with the			with remote						remote arm
	disease		exception of			followups;						(p=0.002).
	progression,		those related to			and 2) being						
	and device issues		lead and			able to						
	compared to pts		device integrity.			attend all						
	receiving standard		IN-OFFICE ARM:			required						
	in-office care. A		983			follow-up						
	secondary		Only audible pt			visits.						
	objective was to		alerts associated			No HF as						
	compare the rates		with lead and			well as						
	of CV health care		device integrity			NYHA 1-4						
	utilization between		were enabled for			were						
	pts in the remote		pts in the			included in						
	and in-office arms.		in-office arm			study						
			because they are			,						
			nominal settings									
			and considered									
			standard of care									
SMART AV	Aim of trial was to	randomiz	1014; 332 SD;	6	Diuretics, beta	3 or 4	<35%,	>120	Complete heart block,	N/A	The primary	The medians (guartiles 1 and 3) for
Circulation.	compare 3	ed,	323-Echo; 325		blockers, and			-	or who otherwise are		endpoint was	change in LV end-systolic volume
2010;122:266	alternative	multicent	Fixed nominal AV		angiotensin-				unable to tolerate pacing		LV end-systolic	at 6 mo for the SmartDelay,
0-2668	techniques and to	er,	delay		converting				at VVI-40-RV for up to 14		volume.	echocardiography, and fixed arms
21098426	assess the	double-	,		enzyme inhibitors				d		Secondary	were 21 mL (45 and 6 mL), 19 mL
(253)	hypotheses that	blinded,			or angiotensin				Previously received		endpoints	(45 and 6 mL), and 15 mL (41 and
()	systematic AV	3-armed			receptor				CRT		included NYHA	6 mL), respectively. No difference
	delay optimization	trial			blockers,				Upgrade of a		class, QoL	in improvement in left ventricular
	with								pacemaker or ICD and		score, 6-min	end-systolic volume at 6 months
	echocardiography								unable to tolerate pacing		walk distance,	was observed between the
	and/or the SD								at VVI-40-RV for up to 14		LV end-diastolic	SmartDelay and echocardiography
	algorithm is								d		volume, and	arms (p=0.52) or the SmartDelay
	superior to a fixed								Heart transplant during		LVEF.	and fixed
	nominal AV delay								the course of the study			arms (p=0.66). Secondary end
	as demonstrated								Cardiac surgeries or			points, including structural (LV end-
	by improved LV								procedures planned			diastolic volume and LVEF) and
	geometry after 6								during the study			functional (6-min walk, QoL, and
	mo and that								Have or are likely to			NYHA classification)
	programming								receive a tricuspid valve			measures, were not significantly
	according to SD is								prosthesis (mechanical			different between arms.
				1		1		1	right volvo)			

echocardiography-				Neuromuscular,		
determined AV				orthopedic, or other		
delay				noncardiac condition that		
optimization.				prevents normal,		
				unsupported walking		
				 Pregnant or planning to 		
				become pregnant		
				Enrolled in another		
				investigational study or		
				registry that would		
				directly impact the		
				current study		

*diuretics, ACEIs, beta-blockers, and spironolactone

ACEI indicates angiotensin-converting-enzyme inhibitor; ARB, angiotensin receptor blocker; AV, atrioventricular; CARE-HF, Cardiac resynchronization in heart failure; COMPANION, comparisons of medical therapy, pacing, and defibrillation in heart failure; CONNECT, Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision; CRT, cardiac resynchronization therapy; EF, Ejection Fraction; HCU; Health Care Utilization; HF, heart failure; HM, home monitoring; ICD, implantable cardioverter defibrillator; LVES left ventricular end-systolic; LVESV, left ventricular end-systolic volume; MADIT-CRT, multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy; N/A, not applicable; NYHA, New York Heart Association; PROSPECT, Predictors of Response to CRT; Pt, patient; REVERSE, resynchronization reverses remodeling in systolic left ventricular dysfunction, RAFT, resynchronation-defibrillation for ambulatoryheart failure trial; ROC curve, receiver-operating characteristics curve; SMART-AV, SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy; SD, SmartDelayTM, TRUST, The Lumos-T Safely Reduces Routine Office Device Follow-Up;

Data Supplement 30. Therapies, Important Considerations (Section 7.4.2)

Study Name, Author,							P Values &		Study
Yearl	Aim of Study	Study Type	Study Size	Patient Pop	ulation	Results	95% CI:	OR: HR: RR:	Limitations
				Inclusion Criteria	Exclusion Criteria				
Hemodynamic Assessm	ent of Hospitalized	Patient							
Binanay C, Califf RM,	To determine	RCT	433	Pts with severe	Exclusion criteria to	PAC did not significantly affect the primary endpoint of d	p=0.35	1.26	Use of inotropes,
Hasselblad V et al.	whether PAC use			symptomatic HF despite	minimize confounding	alive and out of the hospital during the first 6 mo (133 d vs			variability
Evaluation study of	is safe and			recommended therapies. 1)	comorbidities or urgent	135 d; HR: 1.00; 95% CI: 0.82-1.21; p=.99), mortality (43			between centers,
congestive HF and	improves clinical			hospitalization for HF within	crossover included	pts [10%] vs 38 pts [9%]; OR: 1.26; 95% CI: 0.78-2.03;			generalizabiity of
pulmonary artery	outcomes in pts			the past y; (2) urgent visit to	Crlevel >3.5 mg/dL	p=.35), or the number of d hospitalized (8.7 vs 8.3; HR:			stringent
catheterization	hospitalized with			the ED; or (3) treatment	(309.4 µmol/ L), or	1.04; 95% CI: 0.86-1.27; p=.67). HR: 1.0 d alive outside			hemodynamic
effectiveness: the	severe			during the preceding mo	prior use of	hospital, HR: 1.26 for mortality (p=0.35), h 1.04 For d			targets
ESCAPE trial. JAMA	symptomatic and			with >160 mg of furosemide	dobutamine or	hospitalized.19 % mortality at 6 mo (dead at 180 d= 43 in			,individualized
2005 October	recurrent HF			daily (or equivalent). LVEF	dopamine >3	PAC, 38 in CAG). Annualized mortality 36%. Inhospital AEs			targets not
5;294(13):1625-33.				≤30%, SBP ≤125mmHg,	µg/kg/min, or any prior	were more common among pts in the PAC group (47			applied
<u>16204662 (</u> 254)				and at least 1 sign and 1	use of milrinone during	[21.9%] vs 25 [11.5%]; p=.04). There were no deaths			
				symptom of congestion.	the current	related to PAC use, and no difference for in-hospital plus			
					hospitalization.	30-d mortality (10 [4.7%] vs 11 [5.0%]; OR: 0.97; 95% CI,			
						0.38-2.22; p=.97			

Drazner MH, Hellkamp AS, Leier CV et al. Value of clinician assessment of hemodynamics in advanced HF: the ESCAPE trial. Circ Heart Fail 2008 September;1(3):170-7. <u>19675681</u> (31)	To determine whether estimated hemodynamics from history and physical examination reflect invasive measurements and predict outcomes in advanced HF	Retrospective analysis	194	Compared H&P estimates of filling pressures and cardiac index with invasive measurements in 194 pts in the ESCAPE trial. H&P estimates were compared with 6-mo outcomes in 388 pts enrolled in ESCAPE.	Crlevel >3.5 mg/dL (309.4 µmol/L), or prior use of dobutamine or dopamine >3 µg/kg/min, or any prior use of milrinone during the current hospitalization.	RAP was <8 mm Hg in 82% of pts with RAP estimated from jugular veins as <8 mm Hg, and was >12 mm Hg in 70% of pts when estimated as >12 mm Hg. From the H&P, only estimated RAP ≥12 mm Hg (OR: 4.6; p<0.001) and orthopnea ≥2 pillows (OR: 3.6; p<0.05) were associated with PCWP ≥30 mm Hg. Estimated cardiac index did not reliably reflect measured cardiac index (p=0.09), but "cold" versus "warm" profile was associated with lower median measured cardiac index (1.75 vs. 2.0 L/min/m(2); p=0.004). In Cox regression analysis, discharge "cold" or "wet" profile conveyed a 50% increased risk of death or rehospitalization. In advanced HF, the presence of orthopnea and elevated jugular venous pressure are useful to detect elevated PCWP, and a global assessment of inadequate perfusion ("cold" profile) is useful to detect reduced cardiac index. Hemodynamic profiles estimated from the discharge H&P identify pts at increased risk of early events.	p<0.05	Estimated RAP OR: 4.6, orthopnea OR: 3.6	posthoc, small sample
Shah MR, Hasselblad V, Stevenson LW et al. Impact of the pulmonary artery catheter in critically ill pts: meta- analysis of randomized clinical trials. <i>JAMA</i> 2005 October 5;294(13):1664-70 <u>16204666</u> (255)	To estimate the impact of the PAC device in critically ill pts.	Meta-analysis	5051	MEDLINE (1985-2005), the Cochrane Controlled Trials Registry (1988-2005), the National Institutes of Health ClinicalTrials.gov database, and the US Food and Drug Administration Web site for RCTs in which pts were randomly assigned to PAC or no PAC were searched. Results from the ESCAPE trial of pts with severe HF were also included. Search terms included pulmonary artery catheter, right heart catheter, catheter, and Swan-Ganz.	N/A	HR for mortality 1.04. In critically ill pts, use of the PAC neither increased overall mortality or d in hospital nor conferred benefit. Despite almost 20 y of RCTs, a clear strategy leading to improved survival with the PAC has not been devised. The neutrality of the PAC for clinical outcomes may result from the absence of effective evidence-based treatments to use in combination with PAC information across the spectrum of critically ill pts.Use of the PAC was associated with a higher use of inotropes (OR: 1.58; 95% CI: 1.19-2.12; p= .002) and IV vasodilators (OR: 2.35; 95% CI: 1.75-3.15; p<.001).	p=0.53	The combined OR for mortality was 1.04 (95% CI: 0.90-1.20; p=.59). The difference in the mean number of d hospitalized for PAC minus the mean for no PAC was 0.11 (95% CI: -0.51- 0.74; p=.73).	heterogenity of studies

Allen LA, Rogers JG, Warnica JW et al. High mortality without ESCAPE: the registry of HF pts receiving pulmonary artery catheters without randomization. J Card Fail 2008 October;14(8):661-9 <u>18926438 (</u> 256)	o characterize F s enrolled in SCAPE egistry	Registry	439	ESCAPE sites enrolled 439 pts receiving PAC without randomization in a prospective registry. Baseline characteristics, pertinent trial exclusion criteria, reasons for PAC use, hemodynamics, and complications were collected. Survival was determined from the National Death Index and the Alberta Registry. Much sicker pts than ESCAPE	N/A	Registry pts had longer hospitalization (13 vs 6 d, p<.001) and higher 6-mo mortality (34% vs 20%, p<.001) than trial pts. On average, registry pts had lower blood pressure, worse renal function, less neurohormonal antagonist therapy, and higher use of IV inotropes compared with trial pts. Although clinical assessment anticipated less volume overload and greater hypoperfusion among the registry population, measured filling pressures were similarly elevated in the registry and trial pts, whereas measured perfusion was slightly higher among registry pts. 6 mo mortality 34%	p<0.05	N/A	N/A
Positive Pressure Ventilation	n Studies								
Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J. Noninvasive ventilation in acute cardiogenic pulmonary edema. <i>N</i> <i>Engl J Med</i> 2008 July 10;359(2):142-51. 18614781 (257) ult ede redu To a whe non ven redu and ther imp diffe oute ass the treat	oninvasive F oninvasive F oninvasive CPAP NIPPV opears to be of enefit in the mediate eatment of pts th acute irdiogenic ulmonary lema and may duce mortality. o determine nether oninvasive intilation duces mortality id whether ere are iportant fferences in utcome isociated with e method of eatment (CPAP NURDAU	RCT	1069 (trandomize d to standard oxygen therapy, (n- 367) versus CPAP (5 to 15 cm of water) (n=346) OR NIPPV (inspiratory pressure, 8 to 20 cm of water; expiratory pressure, 4 to 10 cm of water) (n=356).	Age > 16 y, clinical diagnosis of acute cardiogenic PE, PE on chest radiograph, respiratory rate >20 breaths/min, and arterial hydrogen ion concentration >45 nmol/L (pH <7.35).	N/A	There was no significant difference in 7-d mortality between pts receiving standard oxygen therapy (9.8%) and those undergoing noninvasive ventilation (9.5%, P=0.87). There was no significant difference in the combined endpoint of death or intubation within 7 d between the two groups of pts undergoing noninvasive ventilation (11.7% for CPAP and 11.1% for NIPPV, p=0.81). In pts with acute cardiogenic PE, noninvasive ventilation induces a more rapid improvement in respiratory distress and metabolic disturbance than does standard oxygen therapy but has no effect on short-term mortality. CPAP or NIPPV MAY be considered as adjunctive therapy in pts with severe acute cardiogenic pulmonary oedema in the presence of severe respiratory distress or when there is a failure to improve with pharmacological therapy.As compared with standard oxygen therapy, noninvasive ventilation was associated with greater mean improvements at 1 h after the beginning of treatment in pt-reported dyspnea (treatment difference, 0.7 on a visual-analogue scale ranging from 1 to 10; 95% CI: 0.2-1.3; p=0.008), heart rate (treatment difference, 4 beats/min; 95% CI; 1-6; p=0.004), acidosis (treatment difference, pH 0.03; 95% CI: 0.02-0.04; p<0.001), and hypercapnia (treatment difference, 0.7 kPa [5.2 mm Hg]; 95% CI: 0.4-0.9; p<0.001).	p=0.87	N/A	N/A

Masip J, Roque M, Sanchez B, Fernandez R, Subirana M, Exposito JA. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta- analysis. <i>JAMA</i> 2005 December 28;294(24):3124-30 <u>16380593</u> (258)	To systematically review and quantitatively synthesize the short-term effect of noninvasive ventilation on major clinical outcomes.	Meta-analysis	15 trials comparing noninvasive ventilation to to convention al oxygen	Acute PE, relevant randomized controlled trials and systematic reviews published from 1988-2005. Included trials were all parallel studies comparing noninvasive ventilation to conventional oxygen therapy in pts with acute PE. Comparisons of different techniques, either CPAP or bilevel NIPSV, were also included	N/A	Overall, noninvasive ventilation significantly reduced the mortality rate by nearly 45% compared with conventional therapy (RR: 0.55; 95% CI; 0.40-0.78; p=.72 for heterogeneity). The results were significant for CPAP (RR: 0.53; 95% CI: 0.35-0.81; p= .44 for heterogeneity) but not for NIPSV (RR: 0.60; 95% CI, 0.34-1.05; p=.76 for heterogeneity), although there were fewer studies in the latter. Both modalities showed a significant decrease in the "need to intubate" rate compared with conventional therapy: CPAP (RR: 0.40; 95% CI: 0.27-0.58; p=.21 for heterogeneity), NIPSV (RR, 0.48; 95% CI: 0.30-0.76; p=.24 for heterogeneity), and together (RR: 0.43; 95% CI: 0.32- 0.57; p=.20 for heterogeneity). There were no differences in intubation or mortality rates in the analysis of studies comparing CPAP and NIPSV.Noninvasive ventilation reduces the need for intubation and mortality in pts with acute cardiogenic pulmonary edema. Although the level of evidence is higher for CPAP, there are no significant differences in clinical outcomes when comparing CPAP vs. NIPSV.	p<0.05 for mortality reduction with noninvasive ventilation	RR: 0.55	N/A
Severe Cardiogenic Sho	ck Patient, Role of	PVADs to Bridge	e to Recovery	or Bridge/Transplant	N/A	56(47.0%) of the 117 ptc (41 of 90 [51.20/] with ICM: 45 of	NI/A	NI/A	
Kar B, Gregoric ID, Basra SS, Idelchik GM, Loyalka P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. <i>J Am</i> <i>Coll Cardiol</i> 2011 February 8;57(6):688- 696. <u>20950980 (</u> 259)	efficacy and safety of the pVAD in pts in SRCS despite intra-aortic balloon pump and/or high-dose vasopressor support.	Cohort		vith a SBP of 90 mm Hg, a cardiac index of 2.0 I/(min⋅m2) and evidence of end-organ failure despite IABP/pressor support.A total of 117 pts with SRCS implanted with TandemHeart pVAD were studied, of whom 56 pts (47.9%) underwent active cardiopulmonary resuscitation immediately before or at the time of implantation	N/A	50 (47.9%) of the 117 pts (41 of 80 [51.2%] with ICM; 15 of 37 [40.5%] with NICM) were undergoing CPR during pVAD placement. The average time from CPR onset to TandemHeart implantation was $65.6+/-41.3$ min. 80 pts had ischemic and 37 pts had nonischemic cardiomyopathy. The average duration of support was 5.8 d. After implantation, the cardiac index improved from median 0.52 (interquartile range [IQR]: 0.8) <i>I/</i> (min·m2) to 3.0 (IQR: 0.9) <i>I/</i> (min·m2) (p=0.001). The SBP and mixed venous oxygen saturation increased from 75 (IQR: 15) mm Hg to 100 (IQR: 15)mm Hg (p 0.001) and 49 (IQR: 11.5) to 69.3 (IQR: 10) (p 0.001), respectively. The PCWP, lactic acid level, and Crlevel decreased, respectively, from 31.53 to 10.2 mm Hg to 17.29 10.82 mm Hg (p 0.001), 24.5 (IQR: 74.25) mg/dl to 11 (IQR: 92) mg/dl (p=0.001), and 1.5 (IQR: 0.95) mg/dl to 1.2 (IQR: 0.9) mg/dl (p 0.009). The mortality rates at 30 d and 6 mo were 40.2% and 45.3%, respectively.	IN/A	IV/A	IN/A

Thiele H, Lauer B, Hambrecht R, Boudriot E, Cohen HA, Schuler G. Reversal of cardiogenic shock by percutaneous left atrial- to-femoral arterial bypass assistance. <i>Circulation</i> 2001 December 11;104(24):2917-2922. <u>11739306</u> (260)	To characterize whether PVAD may offer effective treatment for cardiogenic shock	Case Series	18	VADs were implanted in 18 consecutive pts who had cardiogenic shock after MI.	N/A	Mean duration of cardiac assistance was 4+/-3 d. Mean flow of the VAD was 3.2+/-0.6 L/min. Before support, cardiac index was 1.7+/-0.3 L/min per m(2) and improved to 2.4+/- 0.6 L/min per m(2) (p<0.001). Mean blood pressure increased from 63+/-8 mm Hg to 80+/-9 mm Hg (p<0.001). PCWP, central venous pressure, and pulmonary artery pressure were reduced from 21+/-4, 13+/-4, and 31+/-8 mm Hg to 14+/-4, 9+/-3, and 23+/-6 mm Hg (all p<0.001), respectively. Overall 30-d mortality rate was 44%.	N/A	N/A	N/A
Idelchik GM, Simpson L, Civitello AB, Loyalka P, Gregoric ID, Delgado R, III, Kar B. Use of the percutaneous left ventricular assist device in pts with severe refractory cardiogenic shock as a bridge to long-term left ventricular assist device implantation. <i>J Heart</i> <i>Lung Transplant</i> 2008 January;27(1):106-111. 18187095 (261)	To evaluate the efficacy of a PVAD as a bridge to LVAD implantation in pts in cardiogenic shock refractory to IABP and pressor support.	Case Series	18	18 pts in SRCS received a PVAD as a bridge to LVAD placement or orthotopic heart transplantation. 6 pts had ischemic cardiomyopathy, and 12 had nonischemic cardiomyopathy. At the time of PVAD placement, 17 were receiving IABP support, and 10 were undergoing cardiopulmonary resuscitation	N/A	The mean duration of PVAD support was 4.2 +/- 2.5 d. During this time, the cardiac index improved from 0.86 +/- 0.66 to 2.50 +/- 0.93 liters/min/m2 (p < 0.001), SBP improved from 72 +/- 11 to 98 +/- 15 mm Hg (p=0.001), and systemic mixed venous oxygenation improved from 37 +/- 7 to 62 +/- 6 mm Hg (p < 0.001). We terminated life support in 4 of the 18 pts before LVAD placement; 14 were successfully bridged to LVAD or heart transplantation. The mortality rate was 27% at 30 d and 33% at 6 mo. There were no PVAD-associated deaths. CONCLUSION: In pts with terminal hemodynamic collapse, PVAD support is an effective bridging therapy to LVAD and appears to be a viable alternative to other invasive methods of support	N/A	N/A	N/A
Cheng JM, den Uil CA, Hoeks SE, van der EM, Jewbali LS, van Domburg RT, Serruys PW. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. <i>Eur</i> <i>Heart J</i> 2009 September;30(17):2102- 2108 19617601 (262)	A meta-analysis of controlled trials of PVADs vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock for 30 d mortality	Meta-Analysis		2 trials evaluated the TandemHeart and a recent trial used the Impella device	N/A	After device implantation, percutaneous LVAD pts had higher CI (MD 0.35 L/min/m(2), 95% CI: 0.09-0.61), higher MAP (MD 12.8 mmHg, 95% CI: 3.6-22.0), and lower PCWP (MD -5.3 mm Hg, 95% CI: -9.4 to -1.2) compared with IABP pts. Similar 30-day mortality (RR: 1.06; 95% CI: 0.68-1.66) was observed using percutaneous LVAD compared with IABP. No significant difference was observed in incidence of leg ischaemia (RR: 2.59, 95% CI: 0.75-8.97) in percutaneous LVAD pts compared with IABP pts. Bleeding (RR: 2.35, 95% CI: 1.40-3.93) was significantly more observed in TandemHeart pts compared with pts treated with IABP. Although percutaneous LVAD provides superior haemodynamic support in pts with cardiogenic shock compared with IABP, the use of these more powerful devices did not improve early survival. These results do not yet support percutaneous LVAD as first-choice approach in	N/A	N/A	N/A

						the mechanical management of cardiogenic shock.			
Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, Dirschinger J, Kastrati A, Schomig A. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. <i>J</i> <i>Am Coll Cardiol</i> 2008 November 4;52(19):1584-1588 <u>19007597</u> (263)	To test whether the LVAD Impella LP2.5 provides superior hemodynamic support compared with the IABP.	RCT (ISAR- SHOCK Trial)	26	Cardiogenic shock post AMI	N/A	In 25 pts the allocated device (n=13 IABP, n=12 Impella LP2.5) could be safely placed. 1 pt died before implantation. The CI after 30 min of support was significantly increased in pts with the Impella LP2.5 compared with pts with IABP (Impella: DeltaCI = 0.49 +/- 0.46 l/min/m(2); IABP: DeltaCI = 0.11 +/- 0.31 l/min/m(2); p = 0.02). Overall 30-d mortality was 46% in both groups.percutaneously placed LVAD (Impella LP 2.5) is feasible and safe, and provides superior hemodynamic support compared with standard treatment using an IABP.	mortality p= ns	N/A	N/A
Burkhoff D, Cohen H, Brunckhorst C, O'Neill WW. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. <i>Am Heart J</i> 2006	To test the hypothesis that the TandemHeart (PVAD) provides superior hemodynamic support compared with IABP.	RCT (Tandem vs IABP)	42	Pts from 12 centers presenting within 24 h of developing cardiogenic shock.randomized to treatment with IABP (n=14) or TandemHeart PVAD (n=19). Thirty pts (71%) had persistent shock despite having an IABP in place at the time of study enrollment.	N/A	Cardiogenic shock was due to MI in 70% of the pts and decompensated HF in most of the remaining pts. The mean duration of support was 2.5 d. Compared with IABP, the TandemHeart PVAD achieved significantly greater increases in cardiac index and mean arterial blood pressure and significantly greater decreases in PCWP. Overall 30- dsurvival and SAEs were not significantly different between the 2 groups	Mortality =ns	N/A	N/A

September;152(3):469-8					
<u>16923414 (</u> 264)					

AMI indicates, acute myocardial infarction; CPAP, continuous positive airway pressure; IABP, intra-aortic balloon pump; LVAD, left ventricular assist device; N/A, not applicable; NIPPV, noninvasive intermittent positive-pressure ventilation; NIPSV noninvasive pressure support ventilation; PAC, pulmonary artery catheter; PCWP, pulmonary capillary wedge pressure; PE, pulmonary edema; PVAD; percutaneous ventricular assist device; RAP, right atrial pressure; SBP, systolic blood pressure; SRCS, severe refractory cardiogenic shock;

Data Supplement 31. Sildenafil (Section Section 7.4.2)

Study Name, Author, Year	Aim of study	Study Type	Study Size	Etiology	Patien	It Population	Severity Severity of HF	Endpoints	Trial Duration (Years)	Absolute Benefit	P Values & 95% Cl:
PDE5 Inhibition With Sildenafil Improves LVDF, Cardiac Geometry, and Clinical Status in Pts With Stable Systolic HF, Guazzi M, 2011 21036891 (265)	To test the effects of PDE5 inhibition (sildenafil) on LVEF, LVDF, cardiac geometry, and clinical status	RCT	45	Ischemic 50% ICM	Inclusion Criteria NYHA II-III HF with clinical stable conditions defined as no changes in HF regimens or hospitalization since 6 mo before study entry; Negative exercise stress test before study; FEV1/FVC >70%; LVEF <40% Presence of LV diastolic dysfunction determined by Doppler analysis with documen- tation of a mitral inflow early (E) velocity to mitral annulus early velocity (E') >10.	Exclusion Criteria Unable to complete a maximal exercise test; Resting SBP <110 mm Hg; therapy with nitrate preparations; LVADs; History of sildenafil intolerance; significant lung or valvular diseases, neuromuscular disorders, or peripheral vascular disease; Diabetic pt	Symptoms 100% NYHA II-III (42% NYHA II/58% NYHA III) peak VO2 12.8 ml/min/kg VE/VCO2 slope 35.3	Primary Endpoint LV diastolic function, chamber dimensions, and mass	1 y	D Mitral E/A @ 1yr placebo 0 vs SIL -0.19 D IVRT @ 1y placebo +1.4 vs SIL - 6.0 D E/E', lat @ 1yr placebo -0.8 vs. SIL +3.7 D LVEDD (mm)@ 1y placebo +0.9 vs SIL - 4.2d D LVMI @ 1yr placebo no change, SIL decrease (value not provided) D peak VO2 @ 1y placebo +0.3 vs SIL +2.7 D VE/VCO2 Slope at 1y placebo +0.4 vs SIL -6.0; D QOL (breathlessness, fatige, emotional function)	p<0.01 for all parameters

PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support, Tedford RJ, 2008 <u>19808294</u> (266)	To test the hypothesis that when PH persists after adequate LV unloading via recent LVAD therapy, phosphodiesterase type 5A inhibition would decrease PH in this population.	Open label clinical trial	58	56% ICM	Advanced LV dysfunction, treatment with LVAD implantation, and persistent PH (defined by a PVR >3 Wood Units 7 to 14 d after LVAD implantation) despite normalization of their PCWP to a value <15 mmHg were consented for and received treatment with sildenafil in an attempt to reduce PVR before cardiac transplantation	Combined LVAD and RVAD; Pts receiving chronic inotrope therapy	N/A	The primary endpoint of the 12 to 15 wk change in PVR andcontractility index (dP/dtmax/IP)	Enrollment 1999- 2007; 12-15 wk of sildenafil treatment/follow- up;	Lowering of PVR from 5.87±1.93 to 2.96±0.92 Wood Units (mm Hg/ L/min;) after 2- 4 wk of sildenafil therapy; vs. no change in PVR in LVAD only group. Also, marked improvement in RV systolic and diastolic function, as measured by RV contractility index (dP/dtmax/IP; 8.69±1.78 to 13.1±3.3) in LVAD + sildenafil group	Change in PVR, p<0.001 for LVAD +sildenafil group Change in RV contractility index for LVAD+sildefanil group, p<0.0001
Sildenafil Improves Exercise Capacity and Quality of Life in Pts With Systolic HF and Secondary Pulmonary Hypertension, Lewis GD, 2007 <u>17785618</u> (267)	To test the hypothesis that sildenafil, an effective therapy for pulmonary arterial hypertension, would lower pulmonary vascular resistance and improve exercise capacity in pts with HF complicated by PH	RCT	34	50% ICM	>18 y of age, LVEF<40%,NYHA II-IV chronic HF despite standard HF therapies Pts were required to have secondary PH as defined by a mean pulmonary arterial pressure >25 mm Hg	Pts with a noncardiac limitation to exercise, provocable ischemia, hemodynamic instability, or ongoing nitrate therapy were excluded. Additional exclusion criteria included concentric LV hypertrophy, critical aortic stenosis, or long-term use of medications that inhibit cytochrome P450 3A4.	100% NYHA II-IV (53% NYHA II / 38% NYHA III/ 9% NYHA IV) peak VO2 11.1 ml/kg/min	No predefinied primary endpoints; measured exercise capacity, invasive hemodyanamic parameters, QoL, and biomarkers	12 wk trial	Peak VO2 increased from 12.2±0.7 to 13.9±1.0 mL/ kg/min in the sildenafil group (p=0.02) and did not change in the placebo group. Change in peak VO2 from baseline among pts treated with sildenafil (1.8±0.7 mL/· kg/min) was greater than the change in the placebo group (-0.27 mL/kg/min; p=0.02). Sildenafil treated pts had improvement in RVEF at rest and with exercise; control group had no improvement in RVEF. Mean MLHFQ score decreased (reflecting improvement) by 13±5 and 16±5 at wk 6 and 12, respectively, among pts receiving sildenafil (p=0.007) and did not change in pts receiving placebo.	

Long-term use of sildenafil in the therapeutic management of HF, Guazzi M, 2007 <u>18036451</u> (268)	To test the functional exercise capacity and endothelial function in a cohort of CHF pts treated with chronic type 5 phosphodiesterase (PDE5) inhibitor	RCT	46	ICM 46%	Stable NHYA II-III CHF ; negative exercise stress test prior to study; FEV1/FVC >70%; LVEF <45%, determined by echocardiography.	Unable to complete a maximal exercise test; SBP >140 or <110 mm Hg; DM; Therapy with nitrate; History of sildenafil intolerance; Significant lung or valvular diseases, neuromuscular disorders, AF, claudication, or peripheral vascular disease	NYHA II-III peak VO2 15 ml/min/kg	No predefined primary endpoint; assessments (at 3 and 6 mo) of endothelial function by brachial artery FMD, cardiopulmonary exercise testing, ergoreflex response, and QOL questionnaire (CHF) were performed	6 mo f/u	In the sildenafil group only, at 3 and 6 mo, systolic PAP decreased from 33.7 to 25.2 mm Hg and then 23.9 mm Hg, ergoreflex effect on ventilation decreased from 6.9 to 2.3/min and 1.9L/min, VE/VCO2 decreased from 35.5 to 32.1 and 29.8, and breathlessness (score) from 23.6 to 16.6 and 17.2, FMD increased from 8.5% to 13.4% and 14.2%, peak VO2 from 14.8 to 18.5 ml/min/kg and 18.7 ml/min/kg, and ratio of VO2 to work rate changes from 7.7 to 9.3 and 10.	p<0.01 for all changes
Sildenafil Effects on Exercise, Neurohormonal Activation, and Erectile Dysfunction in Congestive HF, Bocci EA, 2002 <u>12196335 (</u> 94)	To investigate the acute effects of sildenafil on exercise, neurohormonal activation, and clinical status of CHF pts with (ED). To evaluate the efficacy and safety of sildenafil for ED treatment in a 1-mo follow-up	RCT	23	ICM 22%	CHF outpatients who were referred for ED treatment (ED was defined as the inability to achieve or maintain an erection sufficient to permit satisfactory sexual intercourse); History of ED $x \ge 4$ mo, present interest in sex and in a stable relationship; Concomitant new symptoms of CHF, worsening of HF clinical status, or a change in specific medication for CHF; All pts were in stable clinical condition without required changes in treatment within the last 3 mo.	ED considered secondary to causes other than CHF; Previous therapy for ED, Recent use of PDE inhibitors; Severe systemic disease, visual disturbances, psychiatric or psychological disorder; UA or MI within the previous 3 mo;, Syncope, Angina, HR <55 bpm, high-risk arrhythmias, new atrial tachycardia/fibrillation/flutter or uncontrolled high ventricular response, new or high degree of AV block HCM Valvular disease, Symptomatic hypotension or SBP <85 mm Hg Unstable CHF, low systemic	NYHA II-IV	First phase: 6MWT, exercise test Second phase: efficacy of sildenafil in ED was evaluated by the 15 questions of the IIEF; adverse side effects	1 mo	Peak VO2 (ml/kg/min) placebo 16.6 <u>+</u> 3.4 vs sildenafil 17.7 <u>+</u> 3.4 Ve/VCO2 slope placebo 33+8 sildenafil 31 <u>+</u> 5	p=0.025 p=0.027

	perfusion, or venous or pulmonary congestion.	

6MWT indicates 6 minute walk test; AF, atrial fibrillation; AV, atrioventricular; CHF, congestive heart failure; D, Doppler; DM, diabetes mellitus; ED, erectile dysfunction; EF, ejection fraction; FEV, forced expiratory volume; FMD, flow-mediated dilatation; FVC, forced vital capacity; HCM, hypertrophic cardiomyopathy; HF, heart failure; HR, heart rate; ICM, ischemic cardiomyopathy; IIEF, International Index of Erectile Function; LVAD, left ventricular assist device; LVDF, left ventricular diastolic function; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; Mitral E/A, Mitral early-to-late velocity; MLHFQ, Minnesota Living with Heart Failure Questionaire; MI, myocardial infarction; NYHA, New York Heart Association; PAP, pulmonary artery pressure; PCWP, pulmonary vascular resistance; QoL, quality of life; RCT, randomized control trial; RVAD, right ventricular assist device; RVEF, right ventricular ejection fraction; SBP, systolic blood pressure; SIL, sildenafil; UA, unstable angina; VE/VCO2, ventilation efficiency ventilation to CO₂ production slope; VO2, oxygen volume.

Data Supplement 32. Inotropes (Section 7.4.4)

Study	Aim of	Stud	Backgrou	Study Size	Etiology	Patient P	opulation	Seve	erity	End	points	Morta	ality	Trial	Absolute	Statistical	Study	Complicatio
Name,	study	у	nd	-			-		-		-			Duratio	Benefit or	Analysis	Limitatio	ns/Adverse
Author,	-	Туре	Therapy											n	Major	(Results)	ns	Events
Year														(Years)	Finding			
			Pretrial	N (Total)	Ischemic/	Inclusion	Exclusion	Severity of	Severity of Study		Secondary	Annualized	1st Year					
			standard	п	Non-	Criteria	Criteria	HF	HF Entry		Endpoint	Mortality	Mortality					
			treatment	(Experiment)	Ischemic			Symptoms Sverity										
				n (Control)					Criteria									

Intermittent 6-mo low- dose dobutamine infusion in severe HF: DICE Multicenter Trial, Oliva F, 1999 <u>10426835</u> (269)	To reduce hospitalizat ions for worsening of CHF by administeri ng intermittent low-dose dobutamin e (2.5- 5mg/kg/min for 48- 72hrs/wk)	RCT	ACEI 82% Digoxin 95% Furosemide 95% Nitrates 63% Amiodarone 39%	38; 19 (dobutamine); 19 (control)	47% ICM	Age >18 y; NYHA III-IV CHF ; Hospitalized for CHF and administratio n of IV inotropes in the 6 mo before the evaluation; \geq 48 h of clinical stability on oral therapy. CI \leq 2.2 L/min/m2 6. LVEF \leq 30%.	History of documented malignant arrhythmias without an automatic defibrillator in place; Neoplastic or systemic disease affecting short-term prognosis UA, angiographi cally documented effective coronary stenosis Surgically curable valvular heart disease	100% NYHA III-IV 6MWTD 298m	NYHA III- IV symptom s, CI <2.2L/mi n/m2	Reduction of hospitalizatio ns for worsening of CHF	Changes in NYHA functional class, 6-min walking test, and mortality rates.	N/A	N/A	Enrollmen t 18 mo (7/94- 12/95); 6 mo f/u	No benefit in hospitalization, functional status, or mortality rate.	Time to first CV death or hospitalization for any cause, p=0.91	Small sample size	N/A
Levosimen dan Infusion versus Dobutamin e Study (LIDO), Follath F, 2002 <u>12133653</u> (270)	To compared the effects of levosimend an and dobutamin e on haemodyn amic performanc e and clinical outcome in pts with low-output HF	RCT	Digoxin 75%, Diuretics 53%, ACEI 89%, bblockers 38%, oral nitrates 41%, anticoagulant s 43%, Class III antiarrhthmic agents 15%, CCB 4%, antiplatelet agents 1%	203; 103 levosimendan; 100 dobutamine	48% Ischemic	Hospitalized with low- output HF, requiring haemodyna mic monitor- ing and treatment with IV inotropic agent. a) deterioration of severe chronic HF despite optimum oral therapy with vasodilators and diuretics, including those awaiting cardiac transplantati on; b) severe	Age <21 y Age <21 y Childbearing potential HF due to restrictive or hypertrophic cardiomyop athy or to uncorrected stenotic valvular disease; Chest pain at the time of randomisati on; Sustained VT/VF within prior 2 wk; AVB of 2nd or 3 rd degree; HR >120 bpm at rest; SBP< 85 mm Hg; Severe renal	Severity determined by invasive hemodyna mic monitoring, not symptomat ology	CI < 2.5 L/min/m2 Mean PCWP > 15 mm Hg	Proportion of pts with haemodyna mic improvement (defined as an increase of 30% or more in CO and a decrease of 25% or more in PCWP) at 24 h.	Changes from baseline in haemo-dynamic variables other than CO and PCWP (eg, Cl, stroke volume, PADP, mean RAP, BP, HR and total peri- pheral resistance) at 24 h; Changes from baseline to 24 h in HF symptoms (dyspnoea and fatigue) on a 4- grade scale (much better, slightly better, no change, worse); Proportion of pts needing IV rescue therapy with positive inotropic	N/A	N/A	Enrollmen t 1/97- 11/98 (23mo); study drug infusion up to 24 hrs, follow up out to 180 d	The primary haemodynamic endpoint was achieved in 28% levosimendan- group pts and 15% in the dobutamine group. Secondary end point: At 180 d, 26% levosimendan group pts had died, compared with 38% in the dobutamine group	Primary endpoint: HR; 1.9; 95% Cl 1.1- 3.3; p=0.022; Secondary endpoint: HR 0.57; p=0.029	No placebo control Small study size No information on the duration of infusion of levosimenda n needed for optimum benefit or on how often it may be repeated in pts who do not respond initially or who relapse after an initial response. Exclusion of pts with cardiogenic shock.	Angina, chest pain, or myocardia ischaemia (7% dobutamine vs 0% levosimendan, p=0.013); Arrhythmias (13% dobutamine vs 4% levosimendan, p=0.023

	·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·													
						HF after	failure (SCr				drugs,						hemodynami	
						cardiac	>450				vasodilators, or						c	
						surgery; or	mol/L);				diuretics during						assessment	
						c) acute HF	Hepatic				the infusion of						Not powered	
						related to a	failure				study drug;						to assess	
						cardiac or	Cardiac				No. of d alive						mortality	
						non-cardiac	tamponade;				and out of							
						disorder of	ARDS;				hospital and not							·
						recent	Septic				receiving IV							
						onset.	shock.				drugs during the							
						LVEF<35%					1st mo;							
						(by echo or					Time to							
						radio-nuclide					development of							
						ventriculogra					worsening HF							
						phy w/in 1					or death.							
						mo of study					Safety							
						enrolment)					endpoints: a)							
						CI < 2.5					AEs, b)							
						L/min/m2					laboratory							
						Mean					safety tests							
						PCWP >15					(blood and							
						mm Hg.					urine), and c)							
											all-cause							
											mortality at 31 d							
											and 180 d after							
											randomization.							
OPTIME-	То	RCT	ACEI 70%,	949; 477	ICM 51%	Age <u>></u> 18 y	If treating	100%	NYHA II-	Total number	Main secondary	N/A	N/A	Recruitm	No difference in	p=0.71, d of	Did not	Sustained
CHF, Cuffe	prospective		ARB 12%,	(milrinone);		LVEF <40%	physician	NYHA II-IV	IV	of d	outcome			ent 7/97-	primary efficacy	hospitalization for CV	directly	hypotension,
MS, 2002	ly test		bblocker	472 (placebo)		within the	judged that	7% NYHA	symptom	hospitalized	included the			11/99 (29	end point	causes within 60 d	address	(SBP< 80 mm
<u>11911756\</u>	whether a		22%,			past y.	IV inotrope		s	for CV	proportion of			mo);	Milrinone was	p=0.92, death or	pts with	Hg for more
(271)	strategy		Diuretic 90%,			Known	was	46% NYHA		causes (or d	cases failing			Study	associated with	readmission within 60 d	ADHF for	than 30 min,
	that		Digoxin 73%,			systolic	essential			deceased)	therapy			drug	higher rate of	p<0.001 for treatment	whom	requiring
	includes		CCB 11%			chronic HF	(eg, for	47% NYHA		within the 60	because of AE			treatment	treatment failure	failure due to AE	inotropic	intervention);
	short-term		placebo v			Hospitalized	shock,	IV		d after	or worsening			for up to	at 48 h due to AE		therapy was	10.7% with
	use of		16%			for	metabolic			randomizatio	HF 48 h after			72 h with	(12.6% vs 2.1%)		felt to be	milrinone, 3.2%
	milrinone in		milrinone			exacerbation	acidosis, or			n. Hospital d	initiation of			60 day			essential	with placebo,
	addition to		ASA 46%			of chronic	severe			were defined	therapy.			follow-up			(eg, low	p<0.001
	standard		Amiodarone			HF <u><</u> 48 n	nypotension			as instal and	Otner			period			cardiac	Significant atrial
	therapy		15%			eanier.). A otivo			Inpl d and	secondary			irom ume			output state	annythinias during index
	can						ACLIVE			ED vioit d	outcomes			01 randomi z			with tissue	boonitalization:
	alipical						ingocarula			visit u.	niciuded the			ation			nypoperiusio	10Spitalization,
	cillical						within the				proportion or pis			auon			n), not	4.0% minimule,
	of nto						mont 2 mo											n=0.004
	or pis bospitalizo						Atrial				thorapy and						for NSV/T o	p=0.004
	d with an						fibrillation				time to achieve						known	
	evacerbatio						with poor				target dose						adverse	
	n of chronic						ventricular				symptoms						effect of	
	HE						rate control				improvement in						milrinone	
							(>110/min)				HE score						Inadequately	
							Sustained				length of initial						nowered to	
							ventricular				hospitalization						evaluate	
							tachycardia				d of						mortality.	
	1			1	1		or	1	1	1	hoopitalization					1		

							ventricular fibrillation.				for CV events from initial							
							Baseline				hospital							
							SBP< 80				discharge to 60							
							mm Hg				d, d of							
							SUF level >				nospitalization							
							3.0mg/aL				within 30 d after							
											randomization							
											all-cause							
											hospitaliz-ation.							
											and mortality.							
HF Etiology	To assess	Post-	ACEI 70%,	949 (total);	485 ICM	Age >18 y	If treating	100%	NYHA II-	D	Main secondary	N/A	N/A	Recruitm	D hospitalized for	Primary endpoint, p=0.2	Retrospectiv	In pts with
and	the	hoc	bblocker	477	(51% of	LVEF < 40%	physician	NYHA II-IV	IV	hospitalized	outcome			ent 7/97-	CV causes or	60d mortality, P=0.03	e study;	ischemic HF,
Response	interaction	analysi	23%,	(randomized	total)	within the	judged that	7% NYHA	symptom	for CV	included the			11/99	death w/in 60d	Combined endpoint,	No data	milrinone tended
to Milrinone	between	S	Amiodarone	to milrinone);	464 NICM	past year.	IV inotrope		S	causes or	proportion of			(29mo);	after	p=0,02	collected on	to be associated
in December	HF etiology		15%, Digovin 72%	242 (ICM, milrinono) :	(49% of	Known	Was	46% NYHA		death Within	cases failing			Study	randomization	Able to reach target	the level of	with prolonged
sated HE	dilu		Diguxin 75%,	235 (NICM	iolai)	chronic HE	leg for	111 47% NVHA		randomizatio	because of			treatment	for ischemic HE	Treatment failure on	received	and higher
(subanalysi	to milrinone			milrinone)		Hospitalized	shock	IV		n	adverse events			for up to	ots 11 7+13 9d	study drug n=0.7	(i.e. ICU vs	mortality
s of	in			243 (ICM		for	metabolic				or worsening			72 h with	for nonischemic	olddy drug, p' o.r	monitored	Composite of
OPTIME-	decompens			placebo); 229		exacerbation	acidosis, or				HF 48 hr after			60 d f/u	HF pts		bed), which	death or
CHF),	ated HF			(NICM,		of chronic	severe				initiation of			period	60 d mortality		potentially	rehospitalization
Felker GM,				placebo)		HF < 48 h	hypotension				therapy.			from time	was greater for		could have	at 60 d was 42%
2003						earlier.).				Other			of	ischemic (11.6%)		affected the	for ischemic pts
<u>12651048</u>							Active				secondary			randomiz	than for non-		results of	treated with
(272)							myocardial				outcomes			ation	ischemic pts		study;	milrinone and
							ischemia				included the				(7.5%).		Imbalanced	36% for those
							within the				proportion of pts				Combined end		tollow up	treated
							Δtrial								reposnitalization		etiologic	(n=0.01 for)
							fibrillation				therapy and				at 60 d was		aroups (4 pts	etiology-
							with poor				time to achieve				38.7% in		in ischemic	treatment
							ventricular				target dose,				ischemic pts and		group vs. 8	interaction). In-
							rate control				symptoms,				31.5% in the		pts in	hospital
							(>110/min)				improvement in				nonischemic pts.		nonischemic	mortality for
1							Sustained				HF score,				More pts with		group lost to	milrinone-
1							ventricular				length of initial				nonischemic HF		tollow-up)	treated pts with
1							tachycardia				nospitalization,				were able to			ISCREMIC HF
1							ventricular				u UI hospitalization				dosing of ACEL of			was 5.0% VS. 1.6% for
1							fibrillation				for CV events				hospital			nlacebo (n
							Baseline				from initial				discharge (49%)			=0.04 for
							SBP< 80				hospital				compared			etiology-
1							mm Hg				discharge to 60				w/ischemic HF			treatment
							SCr level >				d, d of				pts (36%).			interaction), and
1							3.0mg/dL				hospitalization				Treatment failure			60 d mortality
											for CV events				while on the			was 13.3% for
1											within 30 d after				study drug was			milrinone vs
											randomization,				similar btwn the 2			10% for placebo
1											all-cause				ischemic vs			(p= 0.2 i for etiology-
1											and mortality				15 2% for			treatment
											and monunty.				nonischemic pts).			interaction).

	rvation alysis ispectiv ilysis ian iment edical igement ce of IV pmized rences nical rity een roups	Hypokalemia ion of (9.4% nent. levosimedan vs l of 5.9% ion of dobutamine, on and p=0.02) of AF (9.1% ' drug levosimedan vs is not 6.1% ded. dobutamine, p=0.05), nation Headache 'ding (8.3% al levosimedan vs tomatol 4.7% at dobutamine, p=0.01) PVCs (6.1% levosimedan vs
	ortality Dob : OR: 1.24; 3-1.55: utamine: 5% CI:.37- 15 inone: OR: 1:0.53-0.89; : 0.53-0.89; Observatic a analysis Clinician judgement for medica manageme /choice of Non- randomize Difference in clinical severity between subgroups	point: Short % CI 0.74- undpoint Detail of 0.001 duration of infusion ar dose of study drug used is no provided. No informatio regarding
	Inhospital Mortality Dob vs Milrinone: OR: 1.24; 95% Cl: 1.03-1.55: p=0.027 NTG vs Dobutamine: OR: 0.46; 95% Cl:.37- 0.57, p<0.005 NTG vs Milrinone: OR: 0.69; 95% Cl:0.53-0.89; p<0.005	Primary endpoint: HR 0.91; 95% CI 0.74- 1.13; p=0.40 Secondary endpoint (DBNP): p<0.001
Baseline QoL data did not differ between the 2groups.	Worse inpatient mortality and longer LOS with IV inotropes compared to IV vasodilators or neither.	During the 180 d after study drug infusion, there were 173 deaths (26%) in the levosimendan group and 185 deaths in the dobutamine group (28%). No difference in secondary
	10/01- 7/03	Enrollmen t 3/03- 12/04 (22mo), study drug infusion for minimum of 24 h and total duration
	Inpatient mortality Milrinone: 12.3% Dobutami ne: 13.9% NTG: 4.7% Nesiritide: 7.1% All others: 3.1%	N/A
	N/A	N/A
	Total LOS, ICU LOS	All-cause mortality during 31 d, change in BNP level from baseline to 24 h; No. of d alive and out of the hospital during the 180 d; change in pt assessed dyspnea at 24
	Inhospital mortality	All-cause mortality during the 180 d following randomizatio n.
	N/A	Low- output ADHF
	NYHA IV 45% (dyspneic at rest)	86% NYHA IV
	HF is not the principal focus of diagnosis or treatment during the admission or if their medical record cannot be accessed for administrativ e reasons	Severe ventricular outflow obstruction; SBP persistently <85 mm Hg HR persistently ≥ 130 bpm; IV inotrope use during
	admitted to a participating acute care hospital and given a discharge diagnosis of HF	Age ≥18 y Hospitalized with ADHF. LVEF ≤30% within prior 12 mo Required IV inotropic support, as evidenced by an
	56% ICM	76%
	65180; 6549 (NTG); 5220 ; (nesiritide) ; 2021 (milrinone) ; 4226 (dobutamine) ; 49950 (all others)	1327; 664 (levosimendan); 663 (dobutamine)
	Beta blocker 50% ACEI 43% ARB 12% Spironolacto ne 15% (varied amongst subgroups 7- 24%)	Beta blocker 51% ACEI/ARB 69% Aldosterone antagonist 53% IV diuretics 79% IV diuretics 79% IV nitrates 37%
	Regist ry	RCT
	To compare in hospital mortality in pts with acute decompens ated HF receiving treatment with 1 of 4 vasoactive meds (NTG, nesiritide, milrinone, dobutamin e)	To assess the effect of a short- term IV infusion of levosimend an or dobutamin e on long- term survival
	Inhospital mortality in pts with acute decompens ated HF requiring intravenous vasoactive medication s: an analysis from the Acute Decompen sated HF National Registry (ADHERE), Abraham WR, JACC 2005 <u>15992636</u> (273)	Survival of Pts with Acute HF in Need of Intravenous Inotropic Support (SURVIVE) , Mebazaa A, 2007 <u>17473298</u> (274)

					not as a result of hypovolemia ; or (c) PCWP ≥18 mm Hg and/or Cl < 2.2 L/min/m2.												
Enoximone in Intravenous Inotrope- Dependent Subjects Study (EMOTE), Feldman AM, 2007 <u>17967591</u> (275)	To RCT determine whether low-dose oral enoximone could wean pts with ultra- advanced HF (UA- HF) from intravenous (IV) inotropic support	Diuretic 88%, ACEI 62%, ARB 18%, bblocker 40%, digoxin 70%, antiarrhythmi c 37%, ICD 42%, Milrinone 62%, dobutamine 36%, both dobutamine and milrinone 3% Continuous IV inotrope 74%	201; 101 (enoximone); 100 (placebo)	61% ICM	Age > 18 y NYHA III or IV CHF Ongoing need for \geq 5 d of continuous IV inotropic therapy or the need for intermittent IV inotropic therapy with either dobutamine (\geq 2 μ g/kg/min) or milrinone (\geq 0.125 μ g/kg/min) for \geq 6 h at a frequency of \geq 1x/ wk, and for \geq 4 wk. LVEF of \leq 25% by radionuclide ventriculogra phy or \leq 30% by 2- dimensional echocardiog raphy Cardiac dilatation (LVEDD \geq 2.7 cm/m2 or \geq 5.4 cm as measured by 2- dimensional echocardiog raphy within 26 wk	Received a positive inotropic agent other than digoxin, dobutamine, or milrinone within 12 h of randomizati on Trough digoxin levels were >1.0 ng/mL. ICD firing within 90 d.	100% NYHA III-IV (56% NYHA IV)	Low- output ADHF	Ability to wean subjects from IV inotropic support. Assessed using the prespecified CMH test, adjusted for cardiomyopa thy etiology. The primary efficacy variable was also assessed as a protocol and statistical analysis plan– prespecified secondary end point using time- to-event (Kaplan- Meier) curves and the log-rank statistic, over the entire 182 d study period.	Time to reinitiation of IV inotrope Total number of d on IV inotrope Total number of hospitalization d for all cause, CV, and CV/vascular events; Measurements of symptoms (SAS scale, NYHA) and pt well-being (Visual Analog Scale, global assessments) at 4 and 26 wk.	N/A	N/A	Enrollmen t 7/00- 2/04 (44mo); 26 wk trial	30 d after weaning, 51% of placebo pts and 61.4% enoximone pts were alive and free of IV inotropic therapy At 60 d, the wean rate was 30% in placebo group and 46.5% in enoximone group Kaplan-Meier curves demonstrated a trend toward a decrease in the time to death or reinitiation of IV inotropic therapy over the 182-day study period and a reduction at 60 d and 90 d after weaning in the enoximone group.	Unadjusted primary end point p=0.14, adjusted for etiology p= 0.17 60d wean rate unadjusted p=0.016 Time to death/ reinitiation of IV inotrope: 95% CI 0.55- 1.04 Reduction at 60d, 95% CI 0.43-0.89, p = 0.009 Reduction @ 90d, 95% CI 0.49-0.97, P = .031 Time to death/ reinitiation of IV inotrope: HR 0.76 Reduction @60d HR 0.62 Reduction @90d HR 0.69	Small sample size. Not designed or powered as mortality study	Exacerbation of CHF in 54% enoximone vs 52% placebo, NS Dyspnea, 5% enoximone vs 0% placebo, P<0.05

						of the baseline visit). Ongoing and stable (>30 d) therapy with optimal and stable doses of conventional medications												
Use a impact inotro and vasoo thera in hospi d pts sever (ESC Elkay Am H 2007 <u>1717</u> (276)	Ind To determine form risks of all-cause mortality and all-cause mortality with plus e HF rehospitaliz APE), ation am U, associated with the use of vasodilator s, inotropes, and their combinatio n	Post- hoc analysi s of RCT	ACEI 79% Diuretics 98% bBlocker 62% IV inotrope 42% IV vasodilator 28%	433; 75 (vasodilator); 133 (IV inotrope); 47 (both); 178 (neither inotrope/vaso dilator)	50% ICM	Hospitalized for severe ADHF Age>18 y; Hx of HF for \geq 3 mo; On ACEI and diuretics for z3 mo;. LVEF<30% in the 12 mo before randomizatio n; SBP <125 mm Hg; elevated LV filling pressure as indicated by at least 1 physical sign and 1 symptom; At least 1 prior admission for ADHF during the previous 12 mo or aggressive outpatient therapy for at least the previous mo.	N/A	Mean peak VO2 10.0 mean 6MWTD 414 ft	N/A	All- cause mortality	Combined end point of all- cause mortality plus rehospitalization	N/A	6 mo mortality	N/A	Worse 6 mo outcomes (mortality and either mortality/rehospit alization) with inotropes (whether alone or with vasodilator)	6 mo mortality (adjusted), p, 95% Cl Inotrope 1.10-4.15, p=0.024 Both ino & vasodilator 2.34-9.90, p<0.001 6 mo mortality or rehosp (adjusted) Inotrope 1.37-2.82, p<0.001 Both ino & vasodilator 1.88-4.48, p<0.001 6 mo mortality HR adjusted Inotrope 2.14 Both inotrope and vasodilator 4.81 6 mo mortality or rehosp HR (adjusted) Inotrope 1.96 Both ino & vasodilator 2.90	Severe ADHF Conducted by HF specialists at academic medical centers Small study size Non- randomized Retrospectiv e analysis	N/A
Prosp Rand d Milr Survi Evalu (PRC), Pa	ective To omize determine inone the effect val of oral ation milrinone MISE on the cker mortality of	RCT	Nitrates 58% Antiarrhythmi cs 25% Digoxin level 1.5nmol/l	1088; 561 (milrinone); 527 (placebo)	54% ICM	NYHA III-IV CHF x ≥3mo LVEF ≤ 35% Medical regimen of digoxin, diuretics,	Obstructive valvular disease Active myocarditis HCM or cardiac	100% NYHA III-IV 58% NYHA III /42% NYHA IV	NYHA III- IV	All cause mortality	CV mortality, No. of hospitalizations, Addition of vasodilators for treatment of worsening hf,	N/A	N/A	Enrollmen t 22mo (1/89- 10/90); stopped early because	Increased mortality with milrinone (30% milrinone vs 24% placebo); Log-rank test, milrinone	All-cause mortality: nominal P=0.038, 95% CI 0.01-0.61; adjusted P=0.06, CV mortality: 95% CI 0.06-0.69, nominal P=0.016; adjusted	Background medical management is outdated and suboptimal	Stopped study drug due to worsening HF, 1.8% milrinone v 0.9% placebo

M, 1991	pts with					and ACEI for	amyloid				Symptoms,			of	associated with	P=0.037		
<u>1944425</u>	severe					<u>></u> 4wk	Uncorrected				Adverse			adverse	28% increase in			
(277)	chronic HF						thyroid				reactions			effect of	mortality;			
	who						disease							milrinone;	Log-rank test,			
	remained						Malfunctioni							median	milrinone			
	symptomati						ng artificial							duration	associated with			
	c despite						heart valve							of follow-	34% increase in			
	convention													up, 6.1mo	CV mortality			
	al therapy																	
Continuous	То	Post-	N/A	471; 80	67%	NYHA IIIB or	SBP<80 mm	No	NYHA	Occurrence	QoL meaures	N/A	N/A	N/A	The dobutamine	Primary endpt 1st	Observation	At 6 mo
intravenous	evaluate	hoc		(dobutamine);	Ischemic	IV HF for <u>>1</u>	Hg;	dobutamine	IIIB-IV	of clinical					group had a	event p=0.0006	al analysis	First event
dobutamine	clinical	analysi		391 (no		mo while	Significant	:		events from					higher	mortality p=0.0001	No details	85.3%
is	characterist	S		dobutamine)		receiving a	valvular	47% NYHA		the FIRST					occurrence of first		provided	dobutamine vs
associated	ics and					regimen	stenosis;	III		trial,					event (85.3% vs		regarding	64.5% no
with an	outcomes					including a	Anticipated	53% NYHA		including					64.5%) and a		duration and	dobutamine,
increased	of pts with					loop diuretic,	revasculariz	IV		worsening					higher mortality		dose of	p=0.0006
risk of	advanced					digitalis	ation or	Dobutamin		HF, need for					rate (70.5% vs		dobutamine	Death 70.5%
death in pts	HF					glycoside,	valvular	e:		mechanical					37.1%) compared			dobutamine vs
with	receiving					and an	surgery;	11% NYHA		assist					with the no			37.1% no
advanced	intravenous					ACEI,	MI within 3	III		device,					dobutamine			dobutamine,
HF:	continuous					unless	mo;	89% NYHA		resuscitation					group.			p=0.0001
Insights	dobutamin					contraindicat	Uncontrolled	IV		from sudden					No difference in			
from the	e in the					ed.	tachyarrhyth			cardiac					QOL between			
Flolan	FIRST Trial					LVEF <25%	mias;			death, MI,					groups.			
Internation	(Flolan					by a	Unstable or			and death								
al	Internation					multigated	symptom-											
Randomize	al					angiocardiog	limiting											
d Survival	Randomize					ram within 3	angina;											
Trial	d Survival					mo of	Requiremen											
(FIRST),	Trial).					enrollment,	t for a											
O'Connor						unless the pt	mechanical											
CM, 1999						was	assist											
<u>10385768</u>						being	device to											
(278)						treated with	maintain life;											
						an IV	Major											
						inotropic	change in IV											
						agent, in	vasoactive											
						which case	medicat-ions											
						LVEF <30%	within 12 hr											
						was	of											
						accepted.	randomizati											
						Pts receiving	on;											
						IV	CHF caused											
						vasoactive	by											
						medications	uncontrolled											
						were	thyroid											
						required to	disease,							1				
						have not	myocarditis,							1				
						responded	high output							1				
						to an	failure, or							1			1	
						attempt to	infiltrative							1				
						wean from	cardio-							1			1	
						the	myopathy;							1			1	
1		1			1	medicines	Significant											

					within 1 wk of enrollment. Ineligibility for cardiac transplant- ation and eligibility for long-term oral anticoagulati on therapy were also required.	congenital heart disease with shunts, valvular or vascular obstruction; Substance or alcohol abuse w/in 1year; Moderate or severe lung disease; Other comorbid conditions likely to shorten survival; Current use of another investigation al drug or device.											
Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in pts with refractory endstage HF, Hershberge r RE, J Cardiac Failure 2003 <u>12815567</u> (279)	To assess Cohort the Study outcomes of chronic home inotropic support in Stage D HF pts	ACEI/ARB 72% Dobutamine 100% Dopamine 22% Milrinone 11%	36	47% ICM	Hospitalized advanced end-stage HF pts Declined cardiac transplantati on or ineligible for cardiac transplantati on	N/A	N/A presumably NYHA IIIb- IV	N/A	Survival after hospital discharge	Total hospitalizations, causes for rehospitalization , cause of death	N/A	1 y mortality 94% 6 mo mortality 74%	N/A	≥2 rehospitalizations : 36% 0-1 rehospitalization: 64% 30% of rehospitalizations 2/2 worse HF Cause of death Worsening HF 80% SCD 14% Unknown 6%	N/A	Lack of QOL assessment Lack of cost evaluation Small study size Retrospectiv e	Line infection/sepsis (15% of rehospitalization s)

Prognosis on chronic dobutamine or milrinone infusions for stage D HF, Gorodeski EZ, Circ HF 2009 <u>19808355</u> (280)	To investigate the relationship between choice of dobutamin e or milrinone and mortality in inotrope- dependent stage D HF pts	Case- control led	ASA 39% beta blocker 5% (dob) v 34% (mil) ACEI 43% ARB 5% Aldosterone blocker 52% Amiodarone 50% Furosemide 78% Other diuretic 17%	112; 56 (dobutamine); 56 (milrinone)	41% ICM	Stage D HF pts deemed inotrope dependent	N/A	N/A presumably NYHA IIIb- IV	Inotrope depende nt	Survival	N/A	N/A	6 mo mortality (propensit y matched) Dobutami ne 60% Milrinone 54% 1yr mortality Dobutami ne 69% Milrinone 63%	N/A	No difference in mortality between inotrope type (multivariate analysis)	Propensity matched mortality, log-rank p= 0.74	Retrospectiv e analysis Single center study Small study size Lack of QOL assessment	N/A
The Studies of Oral Enoximone Therapy in Advanced HF (ESSENTI AL), Metra M, 2009 <u>19700774</u> (281)	To investigate the effects of low doses of the positive inotrope enoximone on symptoms, exercise capacity, and major clinical outcomes in pts with advanced HF who were also treated with beta blockers and other guideline- recommen ded backgroun d therapy	RCT	ESSENTIAL- I beta blockers 83%, ACEI/ARBs 94%, Aldosterone antagonist 62% Diuretics 95%, DIgitalis glycosides 69% Warfarin 31% Amiodarone 22% ICD 21% ESSENTIAL- II bblocker 90% ACEI/ARBs 99% Aldosterone antagonist 54% Digitalis glycosides 46% Warfarin 8% Amiodarone 14% ICD 5%	ESSENTIAL-I: 904 ESSENTIAL- II: 950 enoximone ESSENTIAL-I 454 ESSENTIAL-II 472 placebo ESSENTIAL-II 450 ESSENTIAL-II 450 ESSENTIAL-II 478	ESSENTI AL-I 52% ICM ESSENTI AL-II 59% ICM	Age >18 y HF caused by ischaemic or nonischaemi c cardiomyopa thy LVEF ≤ 30%, LVEDD > 3.2 cm/m2 or 6.0 cm; NYHA III–IV for >2 mo ≥1 hospitalizati on or 2 outpatient visits requiring IV diuretic or vasodilator therapy w/in 12 mo before screening; Optimal medical therapy including diuretics, beta- blockers, and ACEIs or ARBs unless intolerant or contraindicat	Acute MI in previous 90 d, CV surgery in prior 60 d, Symptomati c ventricular arrhythmias or ICD firing in prior 90 d Serum potassium <4.0 or >5.5 mEq/L, Digoxin levels <1.2 ng/mL Magnesium levels <1.0 mEq/L SCr≥ 2.0 mg/dL Serum bilirubin > 3.0 mg/dL.	91% NYHA III 8% NYHA IV 6MWT 274m (ESSENTI AL-I) 6MWT 293m (ESSENTI AL-II)	NYHA III- IV x > 2 mo	First co- primary endpoint (time to all- cause mortality or CV hospitalizatio ns) and for safety (all- cause mortality) (ESSENTIAL -1 and II, combined) Co-primary endpoint 6MWTD (ESSENTIAL -1,-II separately) Co-primary endpoint Patient Global Assessment, (ESSENTIAL -1 and -II, separately)	N/A	N/A	N/A	Enrollmen t 2/02- 5/04 (28mo); Median follow-up duration 16.6 mo	No difference in first co-primary endpoint: all- cause mortality, all-cause mortality and CV hospitalizations No difference in change in 6MWTD No difference in PGA changes	All-cause mortality, p=0.73, 95% CI: 0.80- 1.17 All-cause mortality and CV hospitalizations, p=0.71, 95% CI 0.86- 1.11 Change in 6MWTD, p=0.16 (ESSENTIAL-I), p=0.57 (ESSENTIAL-II) Change in PGA, p=0.79 (ESSENTIAL-I), p=0.11 (ESSENTIAL-I), p=0.11 (ESSENTIAL-II) All cause mortality, HR 0.97 All-cause mortality and CV hospitalizations, HR 0.98	Crude global assessment for QOL; 6MWT may not be sensitive enough to detect improvement s in exercise capacity/func tional status	1Worsening HF, 39% enoximone vs 39% placebo, p=0.88 Diarrhea, 12% enoximone vs 7% placebo, p=0.001, Palpitations 8% enoximone vs 5% placebo, p=0.01

						ed												
A Prospective Sutdy of Continuous Intravenous Milrinone Therapy for Status IB Pts Awaiting Heart Transplant at Home, Brozena SC, 2003 <u>15454175</u> (282)	To determine the feasibility and safety of continuous IV milrinone therapy administere d at home in pts listed as Status IB for heart transplant	Cohort study	Digoxin 96.6% Loop diuretic 88.3% Warfarin 83.3% Beta-blocker 73.3% ACE-I 66.6% Statin therapy 63.3% Aspirin 63.3% Spironolacto ne 41.6% Amiodarone 28.3% ARB 25.0% Hydralazine/ nitrate 13.3%	60; 60 (milrinone); none	66.6% ICM	Milrinone dose ≤0.5 mg/kg/min; Stable dose of diuretic to maintain dry weight; Long-term venous access; AICD; Adequate social support system as assessed by a transplant social worker; Functional class <nyha iv<br="">on therapy</nyha>	Uncontrolled arrhythmia; SBP<80 mm Hg; Recurrent electrolyte abnormality; Infection requiring IV antibiotic; Requiremen t for >1 inotropic agent; Acute renal failure; Hepatic transaminas es >2x normal	NYHA II-III Peak VO2 11.4 ml/kg/min	NYHA II- III	Survival to transplant	Hospitalizations , QoL measures cost	N/A	N/A	43 mo f/u	88.3% of pts underwent OHT 3.2% died before transplant 1.6% LVAD 3.2% BIVAD QoL improved (MLHFQ score decreased by - 13.3 <u>+</u> 3.4 points)	QOL/MLHFQ score change from baseline, p=0.0061	Not randomized; No control; Limited cost data; Small study size	8% hospitalized for IV line infection 65% rehospitalized for ADHF during study period
Compariso n of dobutamine versus milrinone therapy in hospitalize d pts awaiting cardiac trnsplantati on, Aranda JM, 2003 <u>12595851</u> (283)	To compare clinical outcomes and costs associated with the use of dobutamin e or milrinone in hospitalize d pts awaiting cardiac transplanta	Inct	N/A	36; 19 (dobutamine); 17 (milrinone)	56% ICM	Age >18 y; Prior approval for cardiac transplant; Exacerbatio n of HF not only necessitatin g hospitalizati on but demonstrati ng inotropic dependency.	Any history of intolerance to either dobutamine or milrinone, Hemodynam ic instability at time of random assignment requiring mechanical cardiac support (IABP or	Not presented (presumabl y NYHA IIIb-IV)	not presente d	Hemodynami c decompensa tion (assessed by periodic right heart catheterizatio n), occurrence of ventricular arrhythmias requiring increased antiarrhythmi c therapy,	death, need for mechanical cardiac support, heart transplantation, and need to add or cross over to the alternative inotropic agent	N/A	N/A	Enrollmen t 17mo (1/99- 5/00);	No difference between milrinone and dobutamine with respect to clinical outcomes or hemodynamic measures	N/A	Background medical management not included in manuscript. Data not presented for beta-blocked use in milrinone arm. Small study size No report of SAE/complic	N/A

	tion			-						and	-						ations from	· · · · · · · · · · · · · · · · · · ·
	uon						Normal I V			need for							continuous	
							filling			additional							inotrone (e a	ļ
							nroccuroc			vacadilator							lino.	l
							pressures (magn			vasouliator							infections	l
																	intections,	l
							PCWP < 15			therapy							etc)	1
							mm Hg),			(nitroprussia								ļ
							Developmen			e or								1
							t Of			dopamine).								1
							noncardiac											1
							medical											ļ
							liiness											1
							sufficient to											1
							remove pts											1
							from the											1
							cardiac											1
							transplant											1
							waiting list											
LVAD as	To analyze	Post-	Diuretic 95%	91 (on	N/A	LVEF <u><</u> 25%	Advanced	NYHA IV	Peak	All-cause	QoL at 1 y	N/A	N/A	Enrollmen	In pts undergoing	p=0.0014	Did not	N/A
Destination	outcomes	hoc	>1 Diuretic	inotrope at		NYHA IV	age,		VO2 <14	mortality				t 5/98-	inotropic therapy		capture	
for pts	in pts	analysi	52%	randomization		symptoms	diabetes		mL/kg/mi	during the				7/01;	at randomization,		inotropic	1
undergoing	undergoing	S	bblocker);		for 60 of 90	with end-		n	180 d					1 y survival with		dependency	
intravenous	inotropic		20%	45 (LVAD);		d despite	organ			following					LVAD was 49%		status in all	1
inotropic	infusions at		ACE-I 55%	46 (OMM)		attempted	damage,			randomizatio					vs. 24% for OMM		pts.	
therapy: a	randomizati					therapy with	SCr>2.5			n.					and by 2 y, 28%		Post-hoc,	1
subset	on for					ACEIS,	mg/dL for								were alive with		subgroup	1
analysis	LVAD					diuretics,	<u>></u> 90 d,								LVAD group		analysis.	1
from	destination					and digoxin.									compared with		Outdated	1
REMATCH,	therapy					Peak VO2									11% in OMM		LVAD model.	ļ
Stevenson						<u><</u> 12-14									group			1
LW, 2004						mL/kg/min												1
<u>15313942</u>						with												1
(284)						evidence of												1
						anaerobic												1
						metabolism,												ļ
						Dependence												1
						on IV												1
						inotropic												1
						agents												
						supported											1 1	1
						by												
						completion												
						of a weaning												
						failure form.												

ACEI indicates angiotensin-converting-enzyme inhibitor; ADHF, acute decompensated heart failure; AE, adverse event; AICD, automated implantable cardioverter defibrillator; ARDS, acute respiratory distress syndrome; ASA, aspirin; AVB, atrioventricular block; BIVAD, biventricular assist device; BNP, B-type natriuretic peptide; BP, blood pressure; CCB, calcium channel blockers; CHF, congestive heart failure; CMH, Cochran-Mantel-Haenszel; CO, cardiac output; CrCl, creatinine clearance; CV, cardiovascular; ED, emergency department; F/U, follow-up; HCM, hypertrophic cardiomyopathy; HF, heart failure; HR, heart rate; IABP, intraaortic balloon pump; ICD, implantable cardioverter defibrillator; ICM, ischemic cardiomyopathy; ICU, intensive care unit; IV, intravenous; LOS, length of stay; LVAD, left ventricular assist device; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; MLHFQ, Minnesota Living with Heart Failure Questionaire; MWTD, minute walk test distance; N/A, not applicable; NSVT, non-sustained ventricular tachycardia; NTG, nitroglycerin; NYHA, New York Heart Association; OHT, orthotopic heart transplantation; OMM, optimal medical management; OPTIME_CHF, the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure study; PADP, pulmonary artery diastolic pressure; PCWP, pulmonary capillary wedge pressure; PGA, polyglycolide; pts, patients; PVC, premature ventricular contraction; QoL, quality of life; RAP, right atrial pressure; RCT, randomized control trial; SAE, serious adverse event; SAS, specific activity scale; SBP, systolic blood pressure; SCD, sudden cardiac death; SCr, serum creatinine; UA, unstable angina; UAHF, ultra-advanced; VF, ventricular fibrillation; VT, ventricular fachycardia.

Data Supplement 33. Inotropic Agents in HF (Section 7.4.4)

Study		u	Study	·			R	esults	
	Design	Drug	Support Duration	Patients	Hemo- dynamics	Functional Capacity	QoL	Hospitalization	Survival
PROMISE <u>1944425</u> (277)	RCT	M vs. P	Chronic	NYHA III-IV LVEF <35%	N/A	N/A	N/A	N/A	Ļ
Aranda JM 2003* 12595851 (283)	RCT	M, D	Chronic	Txplt-C	$M \cong D$	N/A	N/A	N/A	$M \cong D$
FIRST 10385768 (278)	RCT (post-hoc)	D vs. none	Chronic	NYHA III-IV LVEF <25-30% Txplt-IE	N/A	N/A	N/A	N/A	Ļ
COSI <u>12815567</u> (279)	Cohort	M, D	Chronic	Hospitalized Txplt-IE	N/A	N/A	NS	N/A	6% @ 1 y 26% @ 6 mo
Brozena SC 2004* 15454175 (282)	Cohort	М	Chronic	Txplt-C (1B)	N/A	N/A	1	N/A	N/A
Gorodeski EZ 2009 <u>19808355 (</u> 280)	Case Control	M vs. D	Chronic	stage D ino-dpdt	N/A	N/A	N/A	65%	M ≅ D 31%-37% @ 1 y
OPTIME-CHF <u>11911756</u> (271)	RCT	M vs. P	Short-term (<72 h)	Hospitalized for HF, NYHA II-IV, LVEF <40%	N/A	N/A	NS	NS	NS
ESCAPE <u>17174645 (</u> 276)	RCT (post-hoc)	M,D	Short-term	Hospitalized for HF, LVEF <30%	N/A	N/A	N/A	↑	Ļ
ADHERE <u>15992636 (</u> 273)	Retro Obs	M, D	Short-term	Hospitalized for HF	N/A	N/A	N/A	↑ LOS	↓ in-hosp

DICE		RCT	D	Intermittent	Hospitalized	N/A	NS	N/A	NS	NS
10426835	(269)			(48-72 h/wk x						
				6 mo)	NYHA III-IV					
				-						
					LVEF <30%, prior					
					h/o ino					

*Study limited to patients awaiting cardiac transplantation.

1B indicates UNOS Status 1B; ADHERE, Acute Decompensated HF National Registry; ADHF, acute decompensated heart failure; COSI, continuous outpatient support with inotropes; D, dobutamine; DICE, Dobutamina nell'Insufficienza Cardiaca Estrema; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; FIRST, Flolan International Randomized Survival Trial; in-hosp, in-hospital mortality; ino-dpdt, inotrope-dependent; LOS, length of stay; LVEF, left ventricular ejection fraction; M, milrinone; N/A, not applicable; NS, no significant benefit; NYHA, New York Heart Association; OPTIME-CHF, the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure study; P, placebo; Post-hoc (RCT), post-hoc analysis of an RCT; PROMISE, PROspective Imaging Study for Evaluation of Chest Pain; RCT, randomized, controlled clinical trial; RetroObs, retrospective observational study; QoL, quality of life; TxpIt-C, cardiac transplantation candidate; and TxpIt-IE, transplantation ineligible.

Data Supplement 34. Mechanical Circulatory Support (Section 7.4.5)

Study			Study				Evidence of	f Benefit		Adverse Events	Comments
	Design	Device (n)	Control (n)	Patients	DOS	Survival	HD Support	Function	QoL		
REMATCH <u>11794191,</u> <u>15313942</u> (284,285)	RCT	HM XVE (68)	OMM (61)	Txplt-IE 74% ICM 71% ino	Ρ	+	N/A	N/A	+	Bleeding Neuro SVT Sepsis	1 y Mortality RR 0.52 No benefit at 2 y
INTrEPID <u>17707178</u> (286)	pNRCT	NovaCor (37)	OMM (18)	Txplt-IE 38% ICM 100% ino	Ρ	+	N/A	N/A	N/A	Neuro Infxn	1 y Survival 27% (NovaCor) vs. 11% (OMM)
HMII-DT <u>19920051</u> (287)	RCT	HMII (134)	HM XVE (66)	Txplt-IE 67% ICM	Ρ	+	N/A	+ +21	+ + ²¹	PumpRplt Sepsis RespFail RenalFail RV Fail Rehosp	2 y Survival 58% (HMII) vs. 24% (HM XVE) Lower AE rate with HMII
HMII-BTT <u>17761592,</u> <u>19608028</u> (288,289)	Cohort	HMII (281)	None	Txplt-C 43% ICM	Т	+	N/A	+ 8, 21	+ 8, 21	Bleeding RespFail Infxn (NV) VT Sepsis RV Fail	Mortality 12mo: 27%; 18mo: 28%
EuroHMII <u>19616963</u> (290)	Registry	HMII (411)	None	21% Txplt-IE 73% Txplt-C 70% ICM 100% ino	21% P 79% T	+	N/A	N/A	N/A	MOF Infxn RV Fail Bleeding VT Neuro	1 y mortality 28.5%
INTERMACS <u>21545946</u> (291,292)	pNRCT	HMII (169)	HM XVE (135) Th- IVAD (34)	Txplt-C 80-89% ino	Т	+	N/A	N/A	N/A	Infxn Bleeding	1 y Survival 85% (HMII) vs 70% (comp)

											Lower rate of infxns with HMII
Grady K, Ann Thorac Surg 2004 <u>15063260 (</u> 293)	pNRCT	HM XVE (78)	None	Txplt-C	Т		N/A	+/-	+/-	n/a	N/A
ADVANCE	pNRCT	Heart Ware (137)	INTER MACS (499)	Txplt-C 41% ICM 82% ino	Т	+	N/A	+	+	Infxn Bleeding Neuro	HeartWare is NON-INFERIOR to control Lower AE rate for bleeding, infxn
Elhenawy A, <i>J Card Surg</i> 2011 <u>21883463 (</u> 294)	ObsRS	BTC (22) NovaCor 6, HMXVE 11, HMII 5	BTT (15) NovaCor 1, HMXVE 7, HMII 7,	41% Txplt-C 59% Txplt-IE 27% ICM	Т	+	N/A	N/A	N/A	Infxn/ Sepsis RVAD MOF	No difference in BTC vs. BTT Post-OHT survival 1 y: 67% vs. 100% 2 y: 67% vs. 90% and 3 y: 64% vs. 87%
Alba A, <i>JHLT</i> 2010 <u>20620083 (</u> 295)	Obs	Fixed pHTN (22) NovaCor 2, HMXVE 14, HMII 6	No pHTN (32) NovaCor 4, HMXVE 19, HMII 9	Txplt-C 22% ICM	Т	+/-	N/A	N/A	N/A	n/a	Comparable post-OHT survival 1 y: 93% vs. 96% 5 y: 77% vs. 86% Higher peri-OHT mortality in fixed pHTN: 18% vs. 0%
Nair P, <i>JHLT</i> 2010 <u>20113910 (</u> 296)	Obs	pHTN (14) NovaCor, Th-LVAD, Th-IVAD, HM XVE	No pHTN (44) NovaCor, Th-LVAD, Th-IVAD, HM XVE	Txplt-C 100% ino 40% ICM	Т	+	+	N/A	N/A	Infxn	Comparable post-VAD and post-OHT survival Early ↓TPG with VAD, sustained ↓mPAP with ongoing MCS
MOMENTUM <u>18765394 (</u> 297)	RCT	Orqis Cancion (109)	OMM (59)	ADHF 100% ino or vasodilator 47% ICM	Т	N.S	NS	N/A	NS	Bleeding Infxn	65d mortality 33.9% (pVAD) vs. 32.2% (OMM)
Seyfarth M, <i>JACC</i> 2008 <u>19007597 (</u> 263)	RCT	Impella (12)	IABP (13)	Post-MI CS	Т	N/A	+	N/A	N/A	n/a	No difference in MOF or sepsis
Burkhoff D, <i>AHJ</i> 2006 <u>16923414 (</u> 264)	RCT	TandemHeart (19)	IABP (14)	cs	Т	N/A	+	N/A	N/A	Arrhythmia Bleeding Neuro (NS)	Not powered to fully assess hemodynamic effects or clinical outcomes
Thiele H, <i>EHJ</i> 2005 15734771 (298)	RCT	Tandem Heart (21)	IABP (20)	Post-MI CS	Т	NS	+	N/A	N/A	Infxn/Sepsis DIC (VAD)	Not powered to detect mortality benefit

+ indicates survival benefit; ADHF, hospitalized for acute decompensated heart failure; AE, adverse event; BTC, bridge to candidacy; BTT, bridge to transplantation; DOS, duration of support; Expt, Experimental group; HMII, HeartMate II; HIMI-BTT, HeartMate II bridge to transplant; HIMI-DT, HeartMate II destination therapy; HM XVE, HeartMate XVE; IABP, intra-aortic balloon pump; ICM, ischemic cardiomyopathy; ino, inotrope-dependent at time of randomization/implantation; Infx, infection; Infxn (NV), non-VAD related infection; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; INTREPID, Investigation of Nontransplant-Eligible Patients Who Are Inotrope Dependent; MCS, mechanical circulatory support; MOF, multi-organ failure; MOMENTUM, Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy; mPAP, mean pulmonary artery pressure; N/A, not applicable; Neuro, neurological complication (e.g. stroke); NS, no significant difference; Obs, Observational study; OHT, orthotopic heart transplantation; OMM, optimal medical management; P, permanent; pNRCT, prospective non-randomized clinical trial; post-MI CS, post-myocardial infarction cardiogenic shock; PumpRplt, pump replacement; RCT, randomized clinical trial; Rehosp, rehospitalization; REMATCH, Randomized Evaluation of

Mechanical Assistance in Treatment of Chronic Heart Failure; RenalFail, renal failure; RespFail, respiratory failure; RV Fail, right ventricular failure requiring inotropic support; RVAD, need for right ventricular assist device; RR, relative risk; SVT, supraventricular tachycardia; T, temporary; Th-IVAD, Thoratec implantable ventricular assist device; Th-LVAD, extracorporeal VAD; TPG, transpulmonary gradient; Txplt-C, transplant candidate; Txplt-IE, transplant ineligible; and VT, ventricular tachycardia.

Data Supplement 35. LVADs (Section 7.4.5)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient	Population	Endp	oints Secondary	Mortality	Trial Duration (Years)	Absolute Benefit or Major Study Findings	Complications/ Adverse Events
			Study Size)	Inclusion Criteria	Exclusion Criteria	Endpoint	Endpoint	1st Year Mortality			
SELECTION OF	VAD CANDIDATES	-						· · · ·	-		
Clinical outcomes for continuous-flow LVAD pts stratified by pre- operative INTERMACS classification, Boyle AJ, JHLT 2011 <u>21168346 (</u> 299)	l o compare post-implant outcomes across different INTERMACS classification levels.	Case- controlle d	101	Pts implanted with an LVAD prior to 8/27/07 at University of Minnesota, University of Pittsburgh, and Columbia University with either a VentraAssist or HM II, classified by INTERMACS level at time of implant (Goup 1: INTERMACS profile 1; Group 2: INTERMACS profiles 2-3; Group 3: INTERMACS profiles 4-7)	N/A	Survival to discharge, LOS after VAD implantation, actuarial survival while on MCS	N/A	N/A	~2 y	Actuarial survival Group 3: 95.8%, Group 2: 68.8%, p=0.065 vs Group 3 Group 1: 51.1%, p=0.011 vs Group 3 survival to discharge Group 3: 95.8%, p=0.02 vs Group 1 Group 2: 93.8%, p=0.009 vs Group 1 Group 1: 70.4%	N/A
VAD AS DT											
Randomized Evaluation of Mechanical Assistance for the Treatment of CHF REMATCH, Rose E, 2001 <u>11794191</u> (285)	To evaluate the suitability of implantable LVAD for their ultimate intended use as a long- term myocardial- replacement therapy for pts who are ineligible for cardiac transplantation	RCT	129	Adults with chronic end- stage HF and contraindications to transplantation. NYHA IV HF for ≥60 of 90 d despite attempted therapy with ACEI, diuretics, and digoxin; LVEF ≤ 25% Peak VO2 ≤12- 14ml/kg/min or a continued need for IV inotropic therapy owing to symptomatic hypotension, decreasing renal function, or worsening pulmonary	HF due to thyroid disease, obstructive cardiomyopathy,pericardial disease, amyloidosis, or active myocarditis Technical obstacles that pose an inordinately high surgical risk INR >1.3 or PT >15 sec BSA ≤1.5 m ² BMI >40 kg/m ² Severe COPD (FEV≤1.5 L/min) Positive serum pregnancy test Fixed pHTN with PVR≥ 8	The primary end point was death from any cause and was compared between groups with the use of the log-rank statistic.	Secondary endpoints included the incidence of SAEs, the no. of d of hospitalizatio n, the QoL, symptoms of depression, and functional status.	1 y Mortality: LVAD 48% OMM 75% p=0.002 2yr Mortality: LVAD 77% OMM 92% p=0.09	Enrollment 5/98-7/01 (39mo);	Reduction of 48 % in the risk of death from any cause — the primary endpoint — in LVAD group, as compared with medical- therapy group (OMM) QoL suggested greater improvement in LVAD group, though not all measures reached statistical significance. (RR 0.52; 95% CI: 0.34-0.78; p=0.001)	Sepsis (Rate Ratio 2.03) Non-neurologic bleeding (Rate Ratio 9.47) Neurologic dysfunction (Rate Ratio 4.35) SVT (Rate Ratio 3.92) Suspected malfunction of LVAD (0.75 rate/pt-y)

		congestion	Wood unito			
			VV000 units			
		NYHA III-IV for <u>></u> 28 d	Candidate for CABG,			
		and who had received at	vaivular repair, LV			
		least 14 d of support with	reduction, or			
		IABP or with a	cardiomyoplasty			
		dependence on IV	Hx of cardiac			
		inotropic agents, with 2	transplantation, LV			
		failed weaning	reduction or			
		attempts.	cardiomyoplasty			
			Mechanical AV that will not			
			be converted to			
			bioprosthesis			
			AST ALT TRili $> 5x$ normal			
			or biopsy-proved liver			
			cirrhosis			
			Stroko w/in 00d or			
			80% extracranial stenosis			
			Impaired cognitive function,			
			Alzheimer's disease and/or			
			other irreversible dementia,			
			Untreated AAA <u>></u> 5 cm			
			Suspected or active			
			systemic infection			
			Platelet count <50x10 ³ /mm ³			
			SCr >3.5 mg/dL or dialysis			
			Peripheral vascular disease			
			with rest claudication or leg			
			ulceration			
			CCB (excent amlodinine) or			
			type I or type III			
			antiarrhythmia agont			
			Abdominal operation			
			pianneo			
			Psychiatric disease			
			/Substance abuse			
			Participating in another			
			clinical study			
			Other condition with survival			
			< 3 y			

LVAD as Destination for pts undergoing intravenous inotropic therapy: a subset analysis from REMATCH, Stevenson LW, 2004 <u>15313942 (</u> 284)	To analyze outcomes in pts undergoing inotropic infusions at randomization for LVAD destination therapy	Post- hoc analysis	91 (on inotrope at randomizat ion)	LVEF <25% NYHA IV symptoms for 60 of 90 d despite attempted therapy with ACEI, diuretics, and digoxin. Peak VO2 <12-14 mL/kg/min with evidence of anaerobic metabolism, Dependence on IV inotropic agents supported by completion of a weaning failure form.	Advanced age, Diabetes with end-organ damage, SCr >2.5 mg/dL for ≥90 d	All-cause mortality during the 180 d following randomization	QoL at 1 y	1 y Mortality: LVAD 51% OMM 76% p=0.0014 2yr Mortality: LVAD 72% OMM 89%	Enrollment 5/98-7/01;	In pts undergoing inotropic therapy at randomization, 1 y survival with LVAD was 49% vs 24% for OMM and by 2 y, 28% were alive with LVAD group compared with 11% in OMM group (p=0.0014).	N/A
Investigation of Nontransplant- Eligible Pts Who Are Inotrope Dependent (INTrEPID Trial), Rogers JG, 2007 <u>17707178 (</u> 286)	To evaluate the impact of LVAD support on survival and QoL in inotrope- dependent HF pts ineligible for cardiac transplantation	Prospec tivenonr andomiz ed clinical trial	55	Adults with inotrope- dependent stage D HF; LVEF < 25%, NYHA IV symptoms for ≥ 3 mo before enrollment and were not candidates for cardiac transplantation Treated with maximally tolerated doses of ACEI, beta-blockers, digoxin, diuretics, and/or other vasodilators.	BSA <1.5 m2 Contraindication to chronic anticoagulation Presence of a mechanical aortic valve constituted an exclusion criterion for LVAD support CVA or TIA within 6 mo before enrollment, a 70% carotid stenosis, or an ulcerated carotid plaque. Unresolved drug or alcohol dependency Active systemic infection SCr >5.0 mg/dL, Tbilli >5.0 mg/dL Mechanical ventilatory support for >48 h at the time of enrollment Comorbid medical condition limiting life expectancy < 2 y	All-cause mortality at 6 mo	AEs, functional capacity HRQoL	1st y mortality 73% (LVAD) vs 89% (OMT) 6mo mortality: 54% (LVAD) vs 78% (OMT)	Enrollment 39 mo (3/00- 5/03); 12 mo follow-up	6 mo survival 46% (LVAD) vs 22% (OMT) (HR 0.47; 95% CI 0.23- 0.93; p=0.03) 1 y survival 27% (LVAD) vs 11% (OMT) Absolute reduction of 1 y mortality by 16% with LVAD (HR: 0.48; 95% CI: 0.25-0.85; p=0.02)	CVA 34.5% Infection 24%
Advanced HF treated with continuous-flow LVAD, (HeartMateII DT), Slaughter MS, 2009 19920051 (287)	To compare the outcomes of pts ineligible for cardiac transplantation with pulsatile versus continuous flow	RCT	200	Age >18 y BSA > 1.5m2 for a pt to be randomized HM XVE - HM II. If BSA < 1.5 m2and > 1.2 m2, the pt must meet the remaining criteria and can be enrolled in the Small Size	HF is due to uncorrected thyroid disease, obstructive cardiomyopathy, pericardial disease, amyloidosis, active myocarditis or RCM. Technical obstacles, which pose an inordinately high surgical risk, in the	The primary composite endpoint was, at 2 y, survival free from disabling stroke and reoperation to	Secondary endpoints included survival, frequency of AE, the QoL, and functional capacity.	1st y mortality: 32% (continuous flow LVAD) vs 42% (pulsatile flow LVAD)	Enrollment 5/05-5/07 (2 y) Follow-up ≥2 y or until death, cardiac transplant, or	The primary composite endpoint was achieved in more pts assigned to receive a continuous- flow LVAD than in those assigned to receive a pulsatile-flow LVAD (46% vs. 11%)	Higher complication rate with pulsatile LVAD (p<0.001) Pump replacement Sepsis Respiratory failure Renal failure RV failure requiring extended inotrope Rehospitalization

LVAD destination	Cohort.	judgment of the investigator.	repair or		explant of	On the basis of the as-	
therapy	NYHA IIIB or IV HF and 1	Ongoing mechanical	replace the		LVAD	treated analysis, the	
	of following:	circulatory support other	device.			Kaplan–Meier estimate	
	i. On OMM, including	than IABP.				of actuarial survival was	
	dietary salt restriction.	BMI >40 kg/m2.				significantly better for	
	diuretics, digitalis, beta	Positive pregnancy test				pts who had a	
	blockers, spironolactone	Presence of mechanical AV				continuous- flow LVAD	
	and ACE-I, for > 45 out of	that will not be converted to				as compared with those	
	the last 60 d and failing	a bioprosthesis				with a pulsatile-flow	
	to respond;	History of cardiac transplant				LVAD	
	ii. NYHA III-IV HF for >14	or cardiomyoplasty.				Improvements in	
	d and dependent on IABP	Platelet count < 50,000				functional status by	
	for 7 d and/or inotropes	Untreated aortic aneurysm >				NYHA Class and	
	for >14 d	5cm.				6MWT did not differ	
	iii. Treated with ACE-I or	Psychiatric disease,				between the two	
	beta blockers for <u>></u> 30 d	irreversible cognitive				groups.	
	and found to be	dysfunction, psychosocial					
	intolerant.	issues that are likely to				Primary composite	
	Female pts of	impair compliance				endpoint:	
	childbearing potential	Active, uncontrolled				HR 0.38; 95%CI: 0.27	
	must agree to use	infection.				to 0.54; p<0.001	
	adequate contraception	Intolerance to anticoagulant				Actuarial survival, RR:	
	Ineligible for cardiac	or antiplatelet therapies or				0.54	
	transplant.	any other peri/post				95% CI, 0.34 to 0.86;	
	VO2max <u><</u> 14 mL/kg/min	operative therapy that may				p=0.008	
	or <50% of predicted	be required					
	VO2max with attainment	INR > 2.5, not due to anti-					
	of anaerobic threshold, if	coagulant therapy, or Plavix					
	not contraindicated due to	within 5 days					
	IV inotropes, angina or	AST, ALT, or total bilirubin					
	physical disability.	> 5x normal or biopsy					
	LVEF is <u><</u> 25%.	proven liver cirrhosis					
		Severe COPD or restrictive					
		lung disease.					
		Fixed pHTN with a PVR >8					
		Wood units					
		Stroke w/in 90 d, or cerebral					
		vascular disease with >80%					
		extra cranial stenosis.					
		SCr >3.5 mg/dl or on					
		dialysis					
		Significant peripheral					
		vascular disease with rest					

					pain or ulceration. Moderate to severe Aly without plans for correction Participation in any other clinical investigation CCB (except amlodipine), or Type I /III antiarrhythmic (except amiodarone) within 28 d prior to enrollment. Any condition that could limit survival to <3 y.						
BTT											
Use of a continuous-flow device in pts awaiting heart transplantation (HMII BTT), Miller LW, 2007 <u>17761592</u> (289)	To assess the efficacy of continuous-flow LVAD for providing hemodynamic support of at least 6 mo to pts awaiting heart transplantation	Cohort	133	Transplant listed. BSA > 1.2 m2. NYHA IV HF symptoms. Female pts of childbearing potential must agree to use adequate contraception On inotropic support, if tolerated. Despite medical therapy, the pt must meet one of the following criteria: a. No contraindication for Status 1A listing b. No contraindication for Status 1B listing PCWP or PAD > 20 mmHg, CI < 2.2 L/min/m2 or SBP < 90 mmHg	HF due to uncorrected thyroid disease, obstructive/restrictive cardiomyopathy, pericardial disease, or amyloidosis. Technical obstacles, which pose an inordinately high surgical risk. Ongoing mechanical circulatory support other than IABP BMI > 40 kg/m2. Positive pregnancy test Mechanical aortic valve that will not be converted to a bioprosthesis Hx of cardiac transplant. Platelet count <50,000/mL. Untreated aortic aneurysm > 5cm. Psychiatric dz irreversible cognitive dysfunction, psychosocial issue Active uncontrolled infection. Intolerance to anticoagulant or antiplatelet therapies or any other peri/post operative therapy that may be required Any one of the following	The principal outcomes were the proportions of pts who, at 180 d, had undergone transplantatio n, had undergone explantation of the device because of recovery of ventricular function, or had ongoing mechanical support and remained eligible for transplantatio n (i.e., were not removed from the waiting list owing to irreversible complications or clinical	Secondary outcomes included overall survival, survival while receiving device support, survival after transplantatio n, frequency of AEs, assessment of functional class by a 6- min walk test, independent evaluation of NYHA functional class by a physician, and QoL.	1 y mortality 32%	Enrollment 3/05-5/06 (15mo); follow-up through 180d	75% reached principal outcomes 18.8% died before 180d of support	Bleeding requiring pRBCs Local infection, non-LVAD Ventricular arrhythmias Sepsis Right HF

					risk factors for and	deterioration)					
					indicators of severe end-						
					organ dysfunction or failure:						
					a) INR >2.5 not due to						
					anticoagulant therapy or						
					Plavix within 5 d.						
					b) Total bilirubin > 5mg/dl,						
					or shock liver (AST, ALT						
					>2,000), or biopsy proven						
					liver cirrhosis.						
					c) Severe COPD or severe						
					restrictive lung disease.						
					d) Fixed pulmonary						
					hypertension, with a recent						
					PVR >6 Wood units,						
					e) Unresolved stroke or						
					uncorrectable						
					cerebrovascular disease.						
					t) SCr >3.5 mg/dL or the						
					need for chronic dialysis.						
					g) Significant peripheral						
					Mederate to sovere portio						
					insufficiency without plans						
					for AV/P						
					Participation in any other						
					clinical investigation						
Extended	To evaluate the	Cohort	281	Same as above (HMII	Same as above (HMII	Survival and	Pts were	6 mo Mortality	Enrollment	79% of LVAD nts	Bleeding requiring pBBCs
Mechanical	use of a	Study	201	Study)	Study)	transplantatio	assessed for	18% (95% CI	3/05-4/08 (38	reached primary	Respiratory failure
Circulatory	continuous-flow	olddy		otady)	etady)	n rates were	AFs	77-87%)	mo): 18 mo	outcome measure	Local infection non-LVAD
Support with a	rotary LVAD as a					assessed at	throughout	1 v Mortality	follow-up	either received	Ventricular arrhythmias
Continuous-	bridge to heart					18 mo.	the study and	27% (95% CI:		a transplant.	Sepsis
Flow Rotary	transplantation						for	66-80%) 18 Mo		recovered cardiac	Right HF requiring extended
LVAD (HMII	over an extended						QoL.	Mortality 28%		function and	inotropic support
BTT), Pagani	period, up to 18						functional	(95% CI: 65-		underwent device	
FD, 2009	mo						status, and	79%)		explantation, or	
19608028 (288)							organ	,		remained alive with	
							function for 6			ongoing LVAD	
							mo.			support at 18-mo	
										follow-up	

Evaluate the Safety and Efficacy of a Percutaneous LVAD vs. IABP for Treatment of Cardiogenic Shock Caused by Myocardial Infarction, Seyfarth M, 2008 <u>19007597</u> (263)	To test whether the percutaneous LVAD Impella LP2.5 provides superior hemodynamic support compared with IABP	RCT	26	Pts with acute MI within 48 h and cardiogenic shock within 24 h CI <u><</u> 2.2 I/min/m2 and PCWP >15 mm Hg <i>or</i> an angiographically measured LVEF <30% and LVEDP >20 mm Hg	Age <18 y; Prolonged resuscitation (>30 min) HCM; LV thrombus; Treatment with intra-aortic balloon pump; Severe valvular disease or mechanical heart valve; Cardiogenic shock caused by mechanical complications of AMI such as ventricular septal defect, acute mitral regurgitation greater than second degree, or rupture of the ventricle; Predominant RV failure or the need for a RVAD; Sepsis; Known cerebral disease; bleeding with a need for surgical intervention; Allergy to heparin or any known coagulopathy; Moderate to severe AI; Pregnancy; Inclusion in another study	The hemodynamic improvement at 30 min after implantation defined as the change in CI from baseline.	Hemodynami c and metabolic parameters; All-cause mortality at 30 d; Device- related complications including hemolysis, major bleeding, cerebrovasc- ular events, limb ischemia, and multiple- organ dysfunction scores at 30 d using MODS and SOFA criteria.	n/a	N/A; follow-up of 30d	The CI after 30 min of support was significantly increased in pts with the Impella LP2.5 compared with pts with IABP (Impella:DCI=0.49±0.4 6 I/min/m2; IABP: DCI=0.11±0.31 I/min/m2). p= 0.02	No difference in adverse effects between pLVAD and IABP
Impact of Center Volume on Outcomes of LVAD Implantation as DT: Analysis of the Thoratec HeartMate Registry, 1998 to 2005, Lietz K, 2009 <u>19808309 (</u> 300)	To examine the impact of LVAD center volume on the outcomes of DT	Registry ; Retrosp ective analysis	351	NYHA IV symptoms for ≥ 60 d despite maximized oral therapy or requirement of inotropic support LVEF ≤ 25% Peak VO2 <12 mL/kg/min or documented failure to wean IV inotropic therapy; Contraindication to HT attributable to age >65 y, insulin-dependent DM with end organ damage, chronic renal failure or	Not specifically outlined; similar to REMATCH	1 y survival with DT		1 y Mortality low volume: 52.2% medium volume:42.8% high volume: 32.6%	Enrollment: 5/98-12/05 (92 mo); total duration of observation: 102 mo; median follow-up period 9.5mo	High volume center compared with low volume center has an absolute benefit of 19.6% reduction in mortality at 1 y (1y mortality of 32.6% vs 52.2%) OR 0.4; 95% CI 0.2- 0.7; p=0.006;	Sepsis Multiorgan failure Stroke Right HF LVAD failure/complications
				other comorbidities.							
---	--	----------	-----	--	-------------------------	---	-----	--	---------------------------	---	--
Predictors of death and transplant in pts with a mechanical circulatory support device: a multi- institutional study (INTERMACS), Holman WL, 2009 <u>19134530 (</u> 301)	To identify predictors for death and transplantation based on initial results from INTERMACS	Registry	420	Pt underwent implantation of mechanical circulatory support device (INTERMACS registry)	Not specifically stated	1 y survival post LVAD implantation	AEs	1 y Mortality DT: 37% BTT: 24%	19 mo, 12 mo follow-up	Risk factors for death 1. INTERMACS level 1 (p=0.02) 2. Older age (\geq 60yr) (p<0.01) 3. Presence of ascites (p=0.003) 4. Elevated total bilirubin (p=0.05) 5. BiVAD (p=0.002) 6. Total artificial heart (p=0.03)	CNS events Infection
European results with a continuous-flow VAD for advanced HF pts, Lahpor J, 2010 <u>19616963 (</u> 290)	To report on the European experience with the Heart Mate II LVAD	Registry	411	NYHA IIIB-IV CHF on maximum medical treatment including IV inotropic support At least LVAD implantation took place at least 6 mo prior to closing date of study	Not specifically stated	6 mo and 1 y survival	AEs	6 mo mortality: 26% 1st y mortality: 8.5%	52mo (3/04- 8/08)	Overall survival to transplantation, recovery of natural heart function with evice removal, or ongoing device support at end of study: 69%	Multiorgan failure Infections (sepsis, local non- VAD related, drive line) Right heart failure Bleeding Ventricular arrhythmias Neurologic complications

Post–cardiac transplant survival after support with a continuous-flow LVAD: Impact of duration of LVAD support and other variables, John R, 2010 <u>20447659 (</u> 302)	To determine factors related to posttransplant survival in pts supported with continuous-flow LVADs	Registry	468	Adult pts with end-stage HF and listed for heart transplantation (SAME AS HMII BTT STUDIES)	Severe renal, pulmonary, of hepatic dysfunction, Active uncontrolled infection Mechanical aortic valve or aortic insufficiency, Aortic aneurysm, Other MCS (other than IABP) Technical obstacles though to pose an increased surgical risk	or 1 mo and 1 y survival; survival after transplantatio n		Overall 1 y mortality: 13%	Enrollment 38 mo (3/05- 4/08); follow- up for 1 y post- transplant and for 18 mo post-LVAD if not transplanted	Post-transplant survival at 1y: <30 d LVAD support: 94% 30-89 d LVAD support: 93% 90-179 d LVAD support: 84% >180 d LVAD support: 81% (p=0.18)	Bleeding requiring pRBCs
Results of the Post-U.S. FDA- Approval Study With a Continuous Flow LVAD as a Bridge to Heart Transplantation (INTERMACS), Starling RC, JACC 2011 <u>21545946 (291)</u> BIVAD	To determine whether results with the HMII LVAD in a commercial setting are comparable to other available devices for the same indication	Registry	338	INTERMACS registry, LVAD for BTT		Survival (transplant or death)	30 d mortality, inhospital mortality, LOS, QOL, AE	12 mo mortality 13% HMII vs. 22%COMP	Enrollment 9/07-2/09; at least 12 mo follow-up post VAD	12 mo survival: 85% HMII vs 70% COMP no difference between INTERMACS profiles within each group 12 mo survival: log rank p<0.001	Bleeding event rate/pt-y 1.44 HMII v 1.79 COMP, p=0.19 Infection event rate/pt-y 1.0 HMII v 2.12 COMP, p<0.0001
Survival after biventricular assist device implantation: An analysis of INTERMACS database, Cleveland JC, 2011 21621423 (303)	To identify the underlying pre- implant characteristics of the population requiring BiVAD support that contribute to reduced survival, and to identify differences in postoperative outcomes with respect to AEs compared with pts supported with LVAD alone.	Registry	1852	INTERMACS registry, LVAD or BiVAD implantation	N/A S	urvival	AEs	6 mo mortality BiVAD: 44% LVAD: 14% p<0.0001	15 mo (6/06- 9/09)	Risk factors for death with BiVAD Older age Higher BSA Presence of Ascites Elevated creatinine Elevated total bilirubin Elevated INR History of valve surgery Failure to wean from bypass	Bleeding Infection

PERCUTANEOU	S VAD										
Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of HF Unresponsive to Medical Therapy (MOMENTUM), Greenberg B, 2008 <u>18765394</u> (297)	To compare percutaneous continuous aortic flow augmentation (flow≤.5 L/min for up to 96 h) plus medical therapy vs. medical therapy alone	RCT	168	LVEF≤35% Persistent clinical, hemodynamic, and renal derangement despite standard oral medication and treatment for ≥ 24 h with ≥1 of the following drugs at minimum dosage (stable for ≥6 h): a) dobutamine 2.5 mg/kg/min b) milrinone 0.3mg/kg/min c) dopamine 5 mg/kg/min d) nesiritide 0.01mg/kg/min e) nitroprusside 0.25mg/kg/min , or f) nitroglycerine 0.25mg/kg/min PCWP ≥18 mm Hg continuously for 12 h and >20 mm Hg at time of randomization; CI < 2.4 L/min/m 2; SCr >1.2 mg/dL or IV furosemide dose ≥120 mg/d or equivalent.	Recent Q-wave MI or cardaic revascularization; Severe lung disease; Primary liver disease; SCr >4.0 mg/dL or on dialysis; CRT device implanted within 14 d; SBP <80 mm Hg; Need for cardiac mechanical support; Platelet count <50 000/ L; INR > 1.5 in the absence of anticoagulation; Systemic infection; CVA or TIA within 3 mo; Active status on the cardiac transplantation list unless transplant was considered unlikely within 65 d; Peripheral vascular disease with absent pedal pulse or evidence of limb ischemia; Significant uncorrected primary valvular disease.	Overall success composite based on technical (device group only), hemodynamic, and clinical success defined as follows: technical success (device group only), insertion and attainment of flow ≥1 L/min for ≥24 h; hemodynamic success, mean PCWP decrease from baseline of 5 mmHg calculated as the average of values at 72-96 h; and clinical success, from d 1- 35 after randomization, any of the following: ≥10 consecutive d alive out of hospital, no alternative mechanical support, absence of death, and absence of readmission for HF	Change in SCr at d 3 Change in body weight at d 4 Change in Cl (72- 96 h average), Change in NT- proBNP at d 3; Change in KCCQ Overall Summary score at 2 wk and 35 d.	65 d mortality pVAD 33.9% control 32.2% (HR:1.05; p=0.87)	Enrollment 9/04-8/07 (3y), out to 64 d since randomization	Primary efficacy endpoint success (hemodynamic and clinical success for both groups plus technical success in the device group) was seen in 13.6% of the control group and 17.4% of the device group pts (p=0.45) No significant difference was found in SCr, NT- proBNP, or body weight. KCCQ Overall Summary and Clinical Summary scores increased more in the device group (p=0.10) than in the control group (p=0.095), but treatment differences were not significant	Any bleed (40.4% device vs 13.6% control, p=0.0004)
UUL											

Longitudinal Change in QoL and Impact on Survival After LVAD Implantation, Grady KL, 2004 <u>15063260</u> (293)	To describe change with time (from 1mo to 1 y) in pts who received a Heart Mate vented elecric LVAD as BTT and to identify QOL (predictors of survival after LVAD implantation)	Cohort Study	78	Received either HeartMate VE LVAD or Heart Mate implantatble pneumatic LVAD between 8/1/94 and $8/31/99$ at 1 of 9 medical centers in US and one medical center in Australia as BTT Age ≥ 18 y Able to read and write English Physically able to participate	N/A	QOL questionnaires: QOL Index, Rating Question Form, HF Symptom Checklist, and Sickness Impact Profile	N/A	N/A	N/A	QoL outcomes were fairly good and stable from 1 mo to 1 y after LVAD implantation. Overall QoL was unchanged, however both positive and negative changes in subareas of QoL were noted. Pt satisfaction with life improved in area of health/functioning but worsened in satisfaction with significant others. Cardiopulmonary, neurologic, psychological, and physical symptom distress improved. Functional disability with respect to work, sleep/rest, self-care, and physical disability improved over time. However, functional disability with respect to home management and social interaction worsened.	N/A
Continuous Flow LVAD Improves Functional Capacity and QoL of Advanced HF Pts, Rogers JG, 2010 20413033 (304)	To assess the impact of continuous flow LVADs on functional capacity and HF- related QoL	Cohort Study	655	Pts enrolled in either HM II BTT or DT clinical trials	N/A	NYHA Functional Class assess by clinician Pt reported activity levels (METS) and 6MWT Heart failure- related QOL by MLWHF and KCCQ	N/A	N/A	N/A	LVAD pts demonstrated early and sustained improvements in functional status and QOL. NYHA functional class improved from class IV to class I or II in majority of pts (about 80%). Improved 6MWT distance as well as MLWHF and KCCQ scores.	N/A

QOL and	To review QoL in	Retrosp	30	Pts who underwent HMII	Pt transplanted or	6MWT distance,	Hospital	N/A	LVAD pts spend the	90% of pts experienced
functional status	pt on LVAD	ective		or HMI LVAD implantation	died before 365 d of	MET tolerance,	readmissions,		majority of time outside	hospital readmissions, with
in pts surviving	support for <u>></u> 1 y	analysis		between 2000-2008 at	MCS	MLHFQ, NYHA	infectious		the hospital enjoying a	mean no. of readmissions
12 mo after		-		Johns Hopkins Hospital		functional class	complications		good QoL	per year of 2.9 with mean
LVAD										length of stay of 13.8 d. 43%
implantation,										of readmissions were for
Allen JG, 2010										infectious complications. 77%
<u>19837607 (</u> 305)										of LVAD pts required
										additional operations for
										various indications.

AAA indicates abdominal aortic aneurysm; ACEI, angiotensin-converting-enzyme inhibitor; AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AV, atrioventricular; AVR, aortic valve replacement; BMI, body mass index; BSA, body surface area; BTT, bridge to transplantation; CABG, coronary artery bypass surgery; CCB, calcium channel blocker; CHF, congestive heart failure; CI, clearance; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; DM, diabetes mellitus; DT, destination therapy; dz, disease; FEV, forced expiratory volume; HCM, hypertrophic cardiomyopathy; HF, heart failure; HM II, HeartMate II; HM XVE, HeartMate XVE; HT, heart transplantation; hx, history; IABP, intra-aortic balloon pump; INR, international normalized ratio; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; IV, intravenous; KCCQ, Kansas City Cardiomyopathy Questionnaire; LOS, length of stay; LV, left ventricle; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MCS, mechanical circulatory support; METS, metabolic equivalents; MLWHF, Minnesota Living with Heart Failure; MWT, minute walk test; MODS, multiple organ dysfunction scores; N/A, not applicable; NT-proBNP, N-terminal pro-B-Type natriuretic peptide; NYHA, New York Heart Association; OMM, optimal medical management; PAD, peripheral arterial disease; pRBC, packed red blood cells; PCWP, pulmonary capillary wedge pressure; pHTN, pulmonary hypertension; pts, patients; PVR, peripheral vascular resistance; QoL, quality of life; RCM, Restrictive cardiomyopathy; RCT, randomized control trial; RV, right ventricule; SAE, serious adverse event; SBP, systolic blood pressure; SCr, serum creatinine; SOFA, sequential organ failure assessment; SVT, supraventricular tachycardia; Tbilli, total bilirubin; TIA, transient ischaemic attack; VAD, ventricular assist device; and VO2, oxygen volume.

Data Supplement 36. Transplantation (Section 7.4.6)

		(2222)										
Study Name, Author, Year	Aim of study	Study Type	Background Therapy	Study Size	Patient I	Population	Severity	Endpoints	Mortality	Trial Duratio	Absolute Benefit	P Values & 95% CI
				0120						n	of Major Finang	7070 01.
										(Years)		
			Pretrial standard	N (Total	Inclusion	Exclusion	Severity of	Primary	1st Year			
			treatment.	Study	Criteria	Criteria	HF	Endpoint	Mortality			
				Size)			Symptoms	-				
PATIENT SELECTION	ON											
Value of peak	To determine	Case-control	ACEI 95%	122	Ambulatory HF	Dependent on	NYHA II	Death	1 y mortality	3	Pts with preserved	N/A
exercise oxygen	whether		Diuretics 100%		pt referred for	inotrope or	13%		peak VO2 <u><</u> 14,		exercise capacity	
consumption for	measurement of		Digoxin 100%		cardiac	mechanical	NYHA III		accepted for		despite severe resting	
optimal timing of	peak VO2 during		Vasodilators 98%		transplantation	support;	70%		transplant: 30%		hemodynamic	
cardiac	maximal exercise		PDE3 inhibitors 13%		evaluation	Unable to	NYHA IV		peak VO2 >14:		impairment have	
transplantation in	testing can be		Antiarrhythmics 10%			achieve	17%		6%		survival and	
ambulatory pts with	used to identify		ICD 1%			anaerobic			peak VO2 <u><</u> 14,		functional capacity	
HF, Mancini DM,	pts in whom					threshold on			rejected for		equal to those afforded	
Circulation, 1991	transplantation					CPX			transplant: 53%		by cardiac	
<u>1999029 (</u> 27)	can be safely										transplantation	
	deferred											

Predicting Survival in Ambulatory Pts With Severe HF on Beta Blocker Therapy, Lund LH, Am J Cardiol 2003 <u>14636921 (</u> 306)	To examine the predictive value of peak VO2 and the HFSS in pts referred for cardiac transplantation in the beta blocker era	Case-control	Beta blockers 65%	221	Ambulatory HF pts referred for heart transplant evaluation	N/A	N/A	Outcome events: death before transplant, LVAD implantation, inotrope- dependent transplantation	1 y event-free survival: beta blocker 75% no beta blocker 56%	6	No difference in 1 y event-free survival amongst beta blocker users by peak VO2 statum; however, significant difference by HFSS statum	Survival by HFSS, p<0.0002 (total cohort), p<0.02 (beta blocker pts) Survival by VO2, p=0.3 (total cohort), p=0.29 (beta blocker pts)
Selection of Pts for Heart Transplantation in the Current Era of HF Therapy, Butler J, JACC 2004 <u>14998618 (</u> 307)	To assess the relationship between survival, peak exercise oxygen consumption (VO2), and HF survival score (HFSS) in the current era of HF (HF) therapy	Case-control	ACEI 92% Diuretic 96% Digoxin 94% beta blocker 10% (past) vs. 72% (current) Spironolactone 2% (past) vs. 41% (current) Antiarrhythmic 13% AICD 11% (past) v 19% (current)	507	HF pts with LVEF <40%; Underwent CPX in 1994-1997 (past era) or 1999-2001; (current era) Underwent OHT in 1993-2000	On inotrope; Angina or orthopedic issue restricting exercise capacity; Significant valvular stenosis; Exertional oxygen desaturation	NYHA III- IV 84%	1 y event-free survival (without need for LVAD or urgent- Status 1A- transplantation) for HF pts; Overall 1-y survival for transplanted pts	Overal 1-y survival Transplanted: 88% Current era HF: 88% Past era HF: 78%	N/A	No difference in 1 y event-free survival in current era by initial peak VO2; trend towards difference in survival when stratified by HFSS	N/A
Peak VO2 and VE/VCO2 slope in pts with HF: a prognostic comparison, Arena R, Am Heart J, 2004 <u>14760336 (</u> 308)	To examine the ability of peak VO2 and VE/VCO2 slope to predict cardiac-related mortality and hospitalization	Retrospectiv e analysis	ACEI 70% Digitalis 57% Diuretic 63% Oral nitrate 29% beta blocker 42% CCB 15% anticoagulant 35% Antiarrhythmic 15%	213	HF diagnosis; Evidence of LV systolic dysfunction by echocardiogram or cardiac catheterization		N/A	Cardiac-related mortality and hospitalization 1- y after exercise testing via medical chart review and the Social Security Death Index	1 year mortality VE/VCO2 < 34: 0.8% VE/VCO2 <u>></u> 34: 16.9%	8 y, 7 mo (CPX from 4/93- 10/01), plus 1 y f/u	Peak VO2 (≤14 ml/kg/min) was revealed by multivariate Cox regression analysis to add significantly to the VE/VCO2 slope (≥34) in predicting 1-y cardiac-related hospitalization (residual X ² =6.5; p=0.01). The addition of peak VO2 did not provide additional value to the VE/VCO2 slope in predicting overall cardiac-related mortality (residual	1 y cardiac mortality VE/VCO2 slope ≥34, p <0.0001

											X2 = 0.2; p=0.89) or 1-year cardiac-related mortality (residual X2= 1.5; p=0.29).	
Prognostic usefulness of the functional aerobic reserve in pts with HF, Chase P, Am H J, 2010 <u>21095281 (</u> 309)	To develop a prognostic model using FAR as a continuous variable that incorporates pts with an undetectable VT. Secondarily, to determine the prognostic power of the FAR with that of VO2pk and the VE/VCO2 slope in pts with HF	Case-control	Beta blocker 86% (no VT) vs 75% (VT) ACEI 76% CCB 7% Diuretic 90% (no VT) vs 70% (VT)	874	Chronic HF with stable HF symptoms and medications for at least 1 mo before exercise testing, LVEF <u><</u> 45%	N/A	NYHA III- IV 89% (no VT) vs. 45% (VT)	Major cardiac- related events (heart transplantation, LVAD implantation, and cardiac-related death) for 2 y after CPX testing	2 y event-free survival based upon CPX responses favorable responses defined as VE/VCO2 <36, VO2pk > 10 mL O2/kg/min, FAR > 3ml O2/kg/ min) All favorable responses: 95% 1 unfavorable: 83.1% 2 unfavorable: 76.0% All unfavorable: 58.3%	11 y (CPX between 5/97- 5/08); 2 yfollow- up	Pts without a detectable VT had worse prognosis. VE/VCO2 slope (≥36) is the strongest overall univariate and multivariate predictor; FAR (≤3 ml O2/kg/min) and peak VO2 (≤10ml O2/kg/min) are additive to the VE/VCO2 slope	No VT vs VT: p<0.001, 95% CI 2.3- 4.8 Prognostic classification p<0.001
Ventilatory Efficiency and the Selection of Pts for Heart Transplantation, Ferreira AM, Circulation HF, 2010 <u>20176714</u> (310)	To assess whether Ve/VCO2 slope would identify individuals likely to benefit from heart transplant more accurately than current exercise criteria for listing	Case-control	N/A	663	HF pts who underwent cardiopulmonary testing at 4 laboratories; NYHA II-IV; LVEF <u><</u> 40%	Primary valve disease; Congenital heart disease; Planned coronary; revascularization; Planned cardiac surgery; Age <18 y; Primary pulmonary disease; Previous cardiac transplantation; Submaximal CPX (peak RER	NYHA II-IV	Death or heart transplant	During follow-up period, 15.2% underwent transplant 13,7% died	Median f/u 26 mo	Ve/VCO2 slope <43, 1y survival 97% 3y survival 89.4% Ve/VCO2 slope ≥43 1y survival 77.8% 3y survival 55.1%	Ve/VCO2 slope <43, 1y survival: 95% CI: 95.4-98.6, y survival: 95% CI: 85.8-93.0 p<0.001 Ve/VCO2 slope ≥43 1 y survival: 95% CI: 71.3-84.3%, 3 y survival: 95% CI: 45.2-65.0

						ratio <1.05).						
The HF Survival Score outperforms the peak oxygen consumption for heart transplantation selection in the era of device therapy, Goda A, JHLT 2011 21093299 (311)	To evaluate peak VO2 and HFSS as prognostic tools in pts with and without CRT-D referred for heart transplant evaluation	Case-control	ACEI/ARB 80% b-blocker 64% (no device) v 76% (any device)	715	Systolic HF pt referred for heart transplant evaluation	Excluded pts unable to exercise for any reason	mean NYHA class 2.82 (total), 2.7 (no device) vs 2.9 (any device)	Outcome events were defined as death, urgent transplantation (UNOS Status 1), or implantation of LVAD. Pts who underwent transplant as non-urgent (UNOS status 2) were censored alive on the date of the transplant.	1 y event-free survival with peak VO2 10.1- 14 Total cohort: 77% CRT+/-ICD: 84% ICD +/- CRT: 80% Any device: 80% 1 year event- free survival with peak VO2 \leq 10 Total cohort: 65% CRT+/-ICD: 52% ICD +/- CRT: 59% Any device: 58%	N/A	HFSS significantly discriminates between the 3 risk strata across all device groups, whereas peak VO2 <10 only discriminates high risk from low/medium risk.	1y event- free survival, amongst CRT+/-ICD pts low risk HFSS 90%, medium risk HFSS 72%, high risk HFSS 56%
FUNCTIONAL/QOL	OUTCOME		1	1		1	1	1	1	r	1	
Improvement in QoL in Pts with HF who Undergo Transplantation, Grady KL, 1996 <u>8878757 (</u> 312)	To compare QoL of pts with HF at time of loisting for a heart transplant with that 1 y after transplantation	Cohort	Post-transplant maintanence immunosuppression included cyclosporine, prednisone and azathioprine. Some received induction anti- T-cell therapy.	148	Underwent cardiac transplantation at Loyola University of Chicago Medical Center or University of Alabama at Birmingham	N/A	N/A	Symptoms, health perception, functional status, stress, coping, life satisfaction, and overall QoL as measured by 6 point- completed instruments. Demographic and clinical data from chart review.	N/A	N/A	Total symptom distress decreased after heart transplantation. Overall level of functional disability improved after heart transplantation, though remained low.	N/A

A Controlled Trial of Exercise Rehabilitation After Heart Transplantation, Kobashigawa JA, 1999 <u>9920951 (</u> 313)	To assess the effects of structured 6 mo training (cardiopulmonary rehabilitation) on the capacity for exercise early after cardiac transplantation	RCT	All pts were treated with triple-drug immunosuppression cyclosporine, azathioprine, and prednisone.	27	Underwent cardiac transplantation	Multiple medical issues limiting ability to participate in exercise training	N/A	Differences in results of cardiopulmonary exercise stress testing at 1- and 6- mo after transplantation	N/A	Enrollme nt 11 mo; 6 mo followup (total 17mo)	6 mo D peak VO2: +4.4 L/min/kg (exercise) +1.9 L/min/kg (control)	p=0.01
Predictors of QoL in Pts at 1 y After Heart Transplantation, Grady KL, 1999 <u>10328145</u> (314)	To describe QoL, examine relationships between quality of life and demographic, physical, and psychosocial variables, and identify predictors of Q0L in pts 1 y post- transplant	Cohort study	Some pt receieved induction anti-T celll therapy with HATG or OKT3, some did not. All pts were on maintenance immmunosuppression consisting of cyclosporine, prednisone, and azathioprine. Prednisone was rapidly tapered to 0.1mg/kg/d by 1 y post-OH.	232	Pts who survived to 1 y post-cardiac transplant and completed the study booklet	N/A	N/A	QoL domains and multiple subscales within these domains: somatic sensation, psychological state, physical and occupational function, social interaction	N/A	Recruite d pts listed for OHT from 3/88- 8/96	Predictors of better QoL at 1 y post-OHT were: less total stress, more helpfulness of information, better health perception, better compliance with transplant regimen, more effective coping, more functional ability, less symptom distress, older age, fewer complications Predictors of POOR outcome were primarily psychological	p<0.00001 for all
Lifestyle and QoL in Long- Term Cardiac Transplant Recipients, Salyer J, 2003 <u>12633699</u> (315)	To describe long-term (>1 y) cardiac transplant recipients' perceptions of barriers to health-promoting behaviors; ability to manage their health, health- promoting lifestyle, health status and QoL; and determine predictors of QoL.	Cross- sectional study	N/A	93	Cardiac transplant recipients who were: (1) >18 y of age at the time of transplant; (2) could read and write English; and (3) had the visual acuity to read and respond to written questionnaires.	N/A	N/A	Self-report questionnaire incorporating: (1) pt characteristics; (2) barriers to health promotion, perceived health competence and health-promoting lifestyle; (3) perceived health status; and (4) QoL.	N/A	Mean time since transpla nt was 101.4 mo (SD 49.44 mo, range 12-188 mo)	Despite having multiple co-morbidities, heart transplant recipients evaluate their health as good. QoL in recipients who are, on average, 8.5 y post-transplant and demonstrate that, overall, they are moderately satisfied with their lives Predictors of better perceptions of QoL included less education, longer time since transplant.	N/A

											ischemic etiology of HF, fewer barriers, higher perceived health competence and a health- promoting lifestyle (R ² =0.51; F=14.77; p=0.001).	
Changes in exercise capacity, ventilation, and body weight following heart transplantation, Habedank D, 2007 <u>17023206</u> (316)	To prospectively examine changes in peak VO2 and ventilatory efficiency (VE/VCO2 slope) over 24 mo following heart transplantation and evaluate the potentially confounding effects of weight gain	Case control	In txplt pts Immunosuppression: cyclosporine/tacrolimus 100% prenisolone 100% azathioprine/MMF 100% ACE-I/ARB 99% CCB 93% Diuretics 92% alpha blocker 17% beta blocker 12%	125	Underwent cardiac transplantation between 9/97 and 1/02 at German Heart Institute, Berlin; Healthy volunteers	N/A	N/A	Peak VO2, Ve/VCO2 slope	N/A	N/A	Ve/VCO2 slope improved (decreased) at 6 mo and remained improved at 12, 24 mo post-txplt compared with pre-txplt value and no different than matched normal at 6 mo. Peak VO2 improved at 6 mo and remained improved at 12, 24 mo post-txplt compared to pre-txplt baseline but remained lower than normal matched controls.	Ve/VCO2, p<0.001 vs. baseline, p=0.12 vs matched normals Peak VO2, p<0.01 vs baseline, p<0.0001 vs matched normals
Patterns and Predictors of QoL at 5 to 10 Y After Heart Transplantation, Grady KL, 2007 <u>18022086 (</u> 317)	To describe QoL over time and identify predictors of QoL longitudinally from 5-10 y after heart transplantation	Cohort	N/A	555	Transplanted between 7/1990 and 6/1999; Survived 5-10 y post-transplant Completed pt survey pamphlet; Age ≥21y; Literate in English	N/A	N/A	N/A	N/A	N/A	QoL is positive and stable at 5 to 10 y after heart transplantation. Bio-psychosocial variables predicted satisfaction with overall QoL and HRQoL.	N/A
SURVIVAL OUTCOM	<i>N</i> ES		·			·		-	·			
Long-term Results of Cardiac Transplantation in Pts Older than 60 Y, Bull DA, 1996	To examine the long-term results of cardiac transplantation in pts >60 y	Case-control	N/A	527	NYHA IV HF unremedial to surgical treatment other than cardiac replacement,	Severe pHTN (PVR >6 Wood units, irreversible) Severe irreversible	NYHA IV	Survival after transplant	6 y mortality >60y/o: 46% <60y/o: 28%	9 y	18% worse survival/higher mortality at 6 y post- transplant for pts transplanted at age > 60 y.	6-y mortality: p<0.05 Death from infection: p<0.003

<u>8583816 (</u> 318)					Limited life expectancy, 1-y mortality >50% Age <65 y; No systemic illness other than abnormalities related to HF, Emotional stability, Strong family support system.	hepatic, renal or pulmonary disease, Active systemic or pulmonary infection, Recent pulmonary infarction, Uncontrollable HTN, Uncorrectable peripheral vascular disease, Active peptic ulcer disease, History of substance abuse (including alcohol) or behavior problem that would interfere with medical compliance					Older transplant recipient (> $60y/o$) more likely to die of an infectious complication after transplantation. Older transplant recipient (> $60y/o$) more likely to die of malignant disease after transplantation. Older pts (> $60y/o$) had significantly fewer rejection episodes per pt than those < 60 years at transplantation (1.9 ± 1.3 vs 2.6 ± 1.8)	Death from cancer: p=0.015 Rejection episodes: p=0.009
Comparative Outcome and Clinical Profiles in Transplantation (COCPIT) Study, Deng MC, 2000 <u>10968814</u> (319)	To determine whether there is a survival benefit associated with cardiac transplantation in Germany.	Prospective observational cohort	N/A	889	Age ≥16 y, listed for cardiac transplantation	N/A	NYHA IV	Mortality, stratified by HF severity.	1 y mortality after listing: high risk: 51% medium risk: 32% low risk: 29% p <0.0001 1y mortality while waiting on transplant list: high risk: 32% medium risk: 20% low risk: 19% p <0.0003 for high risk compared with low/medium	N/A	For the total cohort there was no survival benefit from transplantation. However, for high risk pts, a mortality risk reduction was observed within 2 wk of transplantation (RR <1.0). This benefit disappeared after eight months.	p=0.04 (mortality risk reduction for high risk pts)

									1y mortality s/p transplant high risk: 64% medium risk: 76% low risk: 75% p=0.2			
Reversible pulmonary HTN in heart transplant candidates— pretransplant evaluation and outcome after OHT, Klotz S, 2003 <u>14607204 (</u> 320)	To assess the value of prostaglandin E1 (PG-E1) for reduction of PHT and to predict the postoperative outcome, compared to pts without PHT	Case-control	ACEI 81% Digitalis 74% Diuretics 75% beta blockers 38%	151	Referred for heart transplant evaluation at Munster University between 3/98- 4/01	Pts with implanted MADs; clinical decompensation or inotropic- support at initial evaluation	NYHA IIIB- IV	1 y post- transplant Mortality	1y post-txplt mortality Non-pHTN: 14.8% Reversible pHTN: 22% Wait list mortality Non-pHTN: 17% Reversible pHTN: 17% Non-wait list Mortality Non-pHTN: 7% Reversible pHTN: 13%, p= 0.39 Irreversible pHTN: 50%, p<0.05	>3 y	Non-wait list, wait list, and 1y post-txplt mortality rates are similar for pts with reversible pHTN as those without pHTN.	N/A
Evolving trends in risk profiles and causes of death after heart transplantation: A 10 y multi- institutional study, Kirklin JK, 2003 <u>12698152</u> (321)	To examine differences in risk-adjusted expected versus observed actuarial outcomes of cardiac transplantation over time at a single institution	Cohort, Registry	N/A	7290	7290 pts undergoing cardiac trans- plantation at 42 institutions over a 10-y period (1990-2000)	N/A	N/A	The primary end point of this study was death from all causes.	1y post-txplt mortality 1990- 1992: 16% 1993-1995: 15% 1996-1999: 15% 3 y post-txplt mortality 1990-1992: 24% 1993-1995: 21% 1996-1999: 21%	10 y registry + 3 y follow- up, 13 y observat ion period	Later transplantation date reduced late post- transplant mortality, particularly that due to rejection and graft vasculopathy, refelcting increasing institutional expertise, changing immunosuppression regimens.	N/A

			1								1	
Retransplantation in 7,290 Primary Transplant Pts: A 10-Y Multi-Institutional Study (Cardiac Transplant Research Database Group), Radovancevic B, 2003 <u>12909465 (</u> 322)	To determine subsets of pts for whom cardiac retransplantation is appropriate therapy	Cohort, Registry	N/A	7290	Pts in CTRD that underwent a second cardiac transplantation between January 1990 and December 1999		NYHA IIIB- IV	Freedom from events (retransplantation and subsequent death, rejection, and infection)	1 y retransplantation rate: 0.8% 10 y retransplantation rate: 3.2% 1y mortality 15% after first transplant 46% after 2 nd transplant 1y mortality post-2 nd txplt by indication for re- txplt 68% acute rejection 50% early graft failure	10 y	Major indications for cardiac retransplantation: 1. Acute rejection 2. Early graft failure 3. Allograft vasculopathy Improved survival post re-txplt if primary reason is allograft vasculopathy, not acute rejection or early graft failure; survival similar to that of pts undergoing primary OHT	Improved survival post-retxplt if done for CAV, p=0.02 Post-retxplt survival for CAV no different than that for primary txplt of any cause, p=0.67
Outcome in Cardiac Recipients of Donor Hearts With Increased LV WT, Kuppahally SS, 2007 <u>17845572 (</u> 323)	To evaluate the outcome in recipients of donor hearts with increased LVWT ≥1.2	Case-control	Cyclosporine 58% Tacrolimus 41% Sirolimus 31% Mycophenolate 69%	157	Pts transplanted between 1/01 and 12/04 at Stanford University Medical Center and the affiliated Northern California Kaiser Permanente heart transplant programs	Pediatric pts, multiple organ recipients, recipients who died within 3 d after transplantation	N/A	Incidence of cardiac recipient death or cardiac retransplantation	Overall mortality (mean 3 y f/u) donor LVH (≥1.2): 21.3% donor normal LVWT: 20% donor LVH (>1.4): 50% total: 20.4%	N/A	Donor heart LVWT>1.4cm increases post- transplant mortality and risk of allograft vasculopathy	Increased mortality with donor LVWT>1.4, p=0.003, 95% CI 1.8- 21.5 VAD BTT, p=0.04, 95% CI 1.02-6.85
Long-term outcomes of cardiac transplantation for PPCM: a multiinstitutional analysis (CTRDG), Rasmusson KD, 2007 <u>18022074 (</u> 324)	To assess outcomes in a relatively large group of PPCM allograft recipients with long-term follow- up	Registry	Induction cytolytic rx 31% Steroids (at 1y): 88%	671	 Age ≤40 y at time of cardiac transplant Etiology of HF: PPCM or IDCM 	N/A	N/A	Rejection, infection, cardiac allograft vasculopathy, and survival	N/A	15 y registry	PPCM recipients had similar long-term survival as male IDCM recipients; PPCM recipients trended towards better survival compared with female IDCM, +h/o pregnancy recipients; PPCM recipients appeared to have better survival than	Overall survival PPM vs male IDCM, p=0.9 PPM vs +P, P=0.05 PPM vs -P, p=0.07

											femail idiopathic DCM, never pregnancy recipients but not statistically significant.	
Clinical outcomes after cardiac transplantation in muscular dystrophy pts (CTRDG), Wu RS, 2010 <u>19864165 (</u> 325)	To investigate the clinical out- comes of cardiac transplantation in muscular dystrophy pts with an extended follow-up period and to assess the outcomes in comparison with an age-matched control cohort	Case- controlled	Calcineurin inhibitors Cyclosporine 87% Tacrolimus 9% Unknown 4% Azathioprine 61% Mycophenolate 33% Uknown 6% Steroids (@1yr) 25%	304	Muscular dystrophy pts who underwent cardiac transplantation and matched- control cohort of IDCM pts (matched by age, BMI, gender, and race)	N/A	N/A	Survival after transplant	1y post-txplt mortality: Muscular dystrophy 11% Matched-control 9% 5 y post-txplt mortality: Muscular dystrophy 17% Matched-control 21% p=0.5	15 y registry	N/A	p=0.5 (post- txplt mortality)
The effect of transplant center volume on survival after heart transplantation: A multicenter study, Shuhaiber JH, 2010 <u>20138635 (</u> 326)	To elucidate the effect of transplant center volume on 1-y mortality	Case-control	N/A	147 transplant centers/ 13230 heart transplants	Data from the Scientific Registry of Transplant Recipients of heart transplantations between 1/1/99 and 5/31/05	N/A	N/A	1 y mortality	1 st y post- transplant mortality significantly higher at very low-volume transplant centers compared with low to high volume transplant centers.	5.5 y registry	Low-, medium, and high-volume transplant centers have lower 1y post-transplant mortality than very-low volume transplant centers.	p<0.001 for each group compared with very- low volume center group, 95% CI: Low volume 0.62-0.82 Med volume 0.56-0.74 High volume 0.48-0.65

ACEI indicates angiotensin-converting-enzyme inhibitor; AICD, automatic internal cardiac defibrillator; BMI, body mass index; BTT, bridge to transplant; CAV, cardiac allograft vasculopathy; CCB, calcium channel blocker; COCPIT, Comparative Outcome and Clinical Profiles in Transplantation; CPX, cardiopulmonary stress testing; CRT, cardiac resynchronization therapy defibrillator; CTRD, Cardiac Transplant Research Database; DCM, dilated cardiomyopathy; FAR, functional aerobic reserve; f/u, follow-up; HATG, anti-T cell therapy; HF, heart failure; HFSS, heart failure survival score; h/o, history of; HTN, hypertension; ICD, implantable cardioverter defibrillator; IDCM, idiopathic dilated cardiomyopathy; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; LVWT, left ventricular wall thickness; MAD, mechanical assist device; N/A, not applicable; NYHA, New York Heart Association; OH, organ harvest; OHT, orthotopic heart transplantation; OKT3, Othoclone; PG-E1, prostaglandin E1; PDE3, phosphodiesterase enzyme; pHTN, pulmonary hypertension; PPCM, peripartum cardiomyopathy; PVR, pulmonary vascular resistance; QoL, quality of life; RCT, randomized controlled trial; RER, espiratory exchange ratio; SD, standard deviation; txplt, transplant; UNOS, United Network for Organ Sharing; VAD, ventricular assist device; VE/VCO2, carbon dioxide production; VO2, oxygen consumption; and VT, ventricular tachychardia.

Data Supplement 37. Comorbidities in the Hospitalized Patient (Section 8.1)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient	Population	Endpoints	Absolute Benefit	P Values & 95% CI:	OR: HR: RR:
			Pretrial standard treatment.	N (Total Study Size)	Ischemic/Non- Ischemic	Inclusion Criteria	Exclusion Criteria	Primary Endpoint			
Diabetes and Hyperglyce	emia										
Intensive vs. Conventional Glucose Control in Critically III Pts: The NICE-SUGAR Investigators. NEJM 2009; 360: 1283-97 (327) <u>19318384</u>	Randomization of ICU pts to intensive vs. conventional glucose control	RCT	Tight glucose control recommended by some	6104	N/A	Hospitalized pts	N/A	Death	-2.60%	95% CI: 1.02 - 1.28 (p=0.02)	OR:1.02 death at 90 d
Elevated Admission Glucose and Mortality in Elderly Pts Hospitalized with HF. Kosiborod M, Inzucchi SE, Spertus JA, Wang Y, Masoudi FA, Havranek EP, Krumholz HM. Circulation 2009; 119: 1899-1907. (328) <u>19332465</u>	To investigate the association between admission glucose and mortality in elderly pts hospitalized with HF	Cohort	Tight glucose control recommended by some	50,532	59.7% ischemic	Hospitalized pts	N/A	Death	N/A	p=0.64	0.998 fully adjusted model per 10 mg/dL increase in admission glucose
Seven-Year mortality in HF pts with undiagnosed DM: an observational study. Flores-LeRoux JA et al. Cardiovasc Diabetol 2011; 10:39 (329) <u>21569580</u>	To assess the prognosis of hyperglycemia (previously undiagnosed DM) in pts admitted to the hospital with HF	Cohort	N/A	400	43% ischemic	Acute HF admission	Lost to follow-up	Total mortality	N/A	95% CI: 1.17 - 2.46 (p=0.006); 95% CI: 1.10 - 1.99 (p=0.009)	aHR unknown DM 1.69 (ACM); HR clinical DM 1.48 (ACM)
Berry C, Brett M, Stevenson K, McMurray JJV, Norrie J. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute HF. Heart 2008;94:296-304. (330) <u>17664189</u>	To investigate the nature and importance of blood glucose abnormalities in an unselected HF population	Cohort	N/A	454	N/A	N/A	N/A	Inhospital mortality	N/A	p=0.0023; (95% Cl: 1.03-1.13)	1.08, aHR per 2 mmol/L increase in glucose
Anemia											

Blood Transfusions for Acute Decompensated HF: Friend or Foe? Garty et al. Am Heart J 2009;158:653- 8. (331) <u>19781427</u>	To assess the impact of blood transfusion among pts with ADHF	Propensity score analysis, national HF survey	Unknown	2335	~85% ischemic	ADHF	Chronic HF admitted for another reason	Mortality; 39.6 vs. 28.5% in BT vs. no BT pts	N/A	In hosp 0.08 (95% CI: 0.21- 1.11); 30 d 0.02 (95% CI: 0.13- 0.64); 1 y 0.12 (95% CI: 0.50- 1.09); 4 y 0.29 (95% CI: 0.64- 1.14)	aOR for BT: 0.48; 0.29; 0.74; 0.86
COPD Bronchodilator Therapy in ADHF in Pts without a History of Chronic Obstructive Pulmonary Disease. Singer AJ et al. Ann Emerg Med. 2008;51: 25-34. (332) <u>17949853</u>	The association between inhaled bronchodilators and HF pts with and without COPD	Registry (AD HF National Registry Emergency Module registry)	N/A	10,978	N/A	ED discharge diagnosis of ADHF as a primary condition, adult	N/A	Mortality (inhospital)	N/A	For pts without COPD bronchodilator use associated with mortality (95% CI: 0.67– 1.56); mechanical ventilation (95% CI: 1.21–2.37) [adjusted, propensity- scored model]. For pts with COPD, no significant difference	1.02; 1.69
Should acute treatment with inhaled beta agonists be withheld from patients with dyspnea who may have heart failure? Maak CA et al. J Emerg Med. 2011 Feb;40(2):135-45. (333) <u>18572345</u>	To determine the safety and efficacy of acute administration of inhaled beta-2 agonists to pts with HF	Review; evidence synthesis from MEDLINE and EMBASE searches	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

ACM indicates all cause mortality; ADHF, acute decompensated heart failure; BT, blood transfusion; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; ED, emergency department; EMBASE, Excerpta Medica Database; HF, heart failure; ICU, intensive care unit; MEDLINE, Medical Literature Analysis and Retrieval System Online; N/A, not applicable; NICE-SUGAR, Normoglycaemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regulation; pt, patient; and RCT, randomized control trial.

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient	Population	Endp	points	Statistical Analysis (Results)
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	
Damien Logeart, 2008 (334) <u>17651843</u>	Study prevalence, causes and consequences of WRF during hospitalization for acute HF	Observational	416 pts admitted for acute HF	Pts hospitalized for acute HF	Chronic and severe renal failure (admission SCr >230 µmol/lol/L); cardiogenic shock or severe low output requiring inotropic agents during the hospitalization; inhospital death	Combined death; first unscheduled readmission for HF Outcome during the 6 mo after discharge was determined by contacting the pts or their general practitioners by telephone.	N/A	WRF occurred in 152 cases (37%), 5±3 d after admission. Old age, DM, HTN and acute coronary syndromes increased the risk of WRF. Inhospital furosemide doses as well as discharge treatment were similar in WRF and no-WRF pts. Serum Crelevation was the strongest independent determinant of a longer hospital stay (p=0.001). AEs occurred in 158 pts (38%) during follow-up, with 23 deaths and 135 readmissions. Cox analysis showed that WRF, transient or not, was an independent predictor of the risk of death or readmission (HR: 1.74 95%CI: 1.14–2.68; p=0.01).
Grace L. Smith, 2006 (335) <u>16697315</u>	Estimate prevalence of renal impairment in HF pts and the magnitude of associated mortality risk using a systematic review of published studies.	Meta-analysis	80,098 hospitalized and non- hospitalized HF pts.	Cohort studies and secondary analyses of several RCTs.	Studies with <6 mo follow-up and a study that defined renal impairment using ICD- 9 code but no direct serum measures	All-cause mortality risks associated with any renal impairment (Cr>1.0 mg/dL, CrCl or estimated eGFR <90 mL/min, or cystatin- clopidogrel >1.03 mg/dL) and moderate to severe impairment (Cr≥1.5, CrCl or eGFR <53, or cystatin- clopidogrel ≥1.56)	Cardiovascular mortality (all cardiovascular mortality and HF or pump failure mortality) and functional decline by validated functional status scales such as NYHA functional class or activities of daily living assessment	A total of 63% of pts had any renal impairment, and 29% had moderate to severe impairment. After follow-up \geq 1 y, 38% of pts with any renal impairment and 51% with moderate to severe impairment died vs 24% without. Adjusted all- cause mortality was increased with any impairment (aHR: 1.56; 95% CI: 1.53-1.60, p <0.001) and moderate to severe impairment (aHR: 2.31; 95% CI: 2.18-2.44, p<0.001). Mortality worsened incrementally across the range of renal function, with 15% (95% CI: 14%-17%) increased risk for every 0.5 mg/dL increase in Crand 7% (95% CI: 4%-10%) increased risk for every 10 mL/min decrease in eGFR.
Marco Metra, 2008 (336) <u>18279773</u>	Association between hospitalizations for acute HF and WRF	Observational	318 consecutive pts admitted for acute HF.	Diagnosis of acute HF, as established by the ESC guidelines; treatment with an IV agent, which in all cases included furosemide with or without other vasoactive medications.	Inability to give informed consent and those with evidence of ACS, acute arrhythmia, myocarditis, valve stenosis, cardiac tamponade, aortic dissection, pulmonary embolism, high output syndrome or evidence of non-cardiovascular factors	Cardiac death and urgent, unplanned hospitalizations	N/A	53 pts (17%) died and 132 (41%) were rehospitalized for HF. WRF-Abs-% occurred in 107 (34%) pts. In multivariable survival analysis, WRF- Abs-% was an independent predictor of death or HF rehospitalization (aHR: 1.47; 95%CI: 1.13–1.81; p=0.024). The independent predictors of WRF-Abs- %, evaluated using multivariable logistic regression, were history of chronic kidney disease (p=0.002), LVEF (p=0.012), furosemide daily dose (p=0.03) and NYHA class (p=0.05) on admission.

Data Supplement 38. Worsening Renal Function, Mortality and Readmission in Acute HF (Section 8.5)

					as main cause of symptoms development of complications or undergoing procedures which may cause a rise in Cr during the hospitalization			
Cowie MR, 2006 <u>16624834</u> (337)	To determine the prevalence and risk factors for WRF among pts hospitalized for decompensated HF and the association with subsequent rehospitalization and mortality.	Observational	299	Age >20 y, documented history of chronic HF defined according to the ESC criteria; documented evidence of impaired LVSF, as demonstrated by an EF 40% on TTE or other imaging technique on the index admission or within the preceding 6 mo	Pts with a planned discharge within 24 h of admission; an investigator-defined history of ACS or cardiogenic shock within 1 mo prior to the index admission; receiving a new prescription for potentially nephrotoxic drugs within 2 d prior to admission; severe aortic stenosis, valvular disease anticipated to require surgery within 6 mo, 'high output' cardiac failure, or those undergoing chronic renal replacement therapy or cancer chemotherapy	All-cause mortality during the initial hospitalization and within 30+7 d and 180+7 d of the index hospitalization; date and cause of subsequent hospital re-admissions were also recorded.	N/A	1/3 of pts [72 of 248 pts, 29% (95% CI: 26-32%)] developed WRF during hospitalization. The risk of WRF was independently associated with SCr levels on admission (OR: 3.02, 95% CI: 1.58-5.76), pulmonary edema OR: 3.35, 95% CI: 1.79-6.27, and a history of AF: OR 0.35: 95% CI: 0.18-0.67. Although the mortality of WRF pts was not increased significantly, the length of stay was 2 d longer [median 11 d (90% range (4-41) vs 9 d (4- 34), p=0.006]. The rehospitalization rate was similar in both groups.
Komukai K, 2008 <u>18577827</u> (338)	To investigate whether renal dysfunction is associated with rehospitalization for CHF after successful discharge	Observational	109 pts	Pts with CHF who had been admitted and followed up after discharge at the outpatient clinic were reviewed. CHF was diagnosed by ≥2 cardiologists on the basis of the Framingham criteria	HF complicated by acute MI, undergoing or starting dialysis during the follow-up period, or undergoning cardiac surgery during the follow-up period	Rehospitalization for HF after discharge	N/A	Pts with decreased renal function (estimated GFR on admission <45ml Emin.1 E1.73m2) were rehospitalized more frequently than were pts with preserved renal function (estimated GFR on admission .45). Pts with decreased renal function were older and had higher rates of anemia, WRF during hospitalization, and previous HF hospitalization. Independent predictors of rehospitalization for HF identified with multivariate analysis were age, previous hospitalization for HF, decreased renal function, and non-use of an ACEI or ARB.
Akhter MW, 2004 <u>15464689</u> (339)	Evaluate the relation between elevated SCr at baseline, as well as WRF during hospitalization, and	Secondary analysis of the VMAC trial	481 (215 had RI and 266 did not)	Patients with dyspnea at rest caused by acute HF	N/A	Length of hospitalization, 30 d readmission rate as well as 30-d and 6-mo mortality	N/A	Elevated baseline Cr was associated with length of hospital stay (median 6 vs 7 d, p=0.003). RI was associated with a 59% increase in 30-d readmissions (17% vs 27%, p=0.016). Higher Cr on admission was associated with both morbidity and mortality. All-cause mortality at 6 mo increased

	outcomes pts hospitalized for decompensated HF in the VMAC trial							(37.4% vs 12.3%, p <0.0001). Baseline RI was an independent predictor of 6-mo mortality with a RR: 2.72; 95% CI 1.76-4.21; p=0.0001.
Nohria A, 2008 <u>18371557</u> (340)	Examine the ESCAPE database to assess the impact of renal dysfunction in patients with acute HF	Secondary analysis of the ESCAPE trial	A total of 433 pts were enrolled at 26 sites	LVEF ≤30%, recent hospitalization or escalation of outpatient diuretic therapy, and SBP ≤125 mm Hg who were admitted to the hospital with at least 1 sign and 1 symptom of HF, despite adequate treatment with ACEIs and diuretics	Creatinine >3.5 mg/dL, the use of dobutamine/dopamine >3 µg/kg/min or milrinone before randomization, and requirement for early right heart catheterization.	D alive and out of the hospital for 6 mo after randomization	30-d mortality and length of stay	Baseline and discharge RI, but not WRF, were associated with an increased risk of death and death or rehospitalization. Among the hemodynamic parameters measured in pts randomized to the PAC arm (n=194), only right atrial pressure correlated weakly with baseline SCr (r=0.165; p=0.03). There was no correlation between baseline hemodynamics or change in hemodynamics and WRF. A PAC-guided strategy was associated with less average increase in Cr, but did not decrease the incidence of defined WRF during hospitalization or affect renal function after discharge relative to clinical assessment alone.
Owan et al., 2006 <u>16679257</u>	Whether the severity of renal dysfunction, the incidence of WRF or outcomes has changed over time (secular trends) in pts hospitalized for HF therapy.	Observational	6440	All consecutive HF pts admitted to Mayo Clinic hospitals in Rochester, MN, between January 1, 1987, and December 31, 2002	N/A	Change in the incidence of WRF or outcomes over time	N/A	The incidence of WRF, defined as an increase in Crof >0.3 mg/dL increased slightly over the study period (p=0.01). Renal dysfunction and development of WRF were associated with mortality. When adjusted for the changes in baseline characteristics, later admission year was associated with lower 3-mo (aOR: 0.98 per y; 95% CI: 0.96–0.99; p=0.008) and overall mortality (HR: 0.99 per y; 95% CI 0.98–1.00; p 0.002).
Krumholz, 2000 <u>10781761</u> (341)	To determine the incidence and identify factors associated with the development of worsening renal function in elderly patients with acute HF and to examine the impact of WRF on clinical and economic outcomes.	Retrospecrive	1,681 pts from 18 Connecticut hospitals	Age ≥65 y; discharge with HF without having clear precipitants for renal dysfunction	Pts <65 y of age; pts whose diagnosis could not be validated by medical record review, pts with severe aortic stenosis, severe mitral stenosis, or HF secondary to a medical illness (e.g., sepsis); major complications (stroke, acute MI shock, heart arrest, hypotension, pneumonia, and infection) or underwent a cardiac procedure requiring contrast (cardiac catheterization or angioplasty) or bypass	The outcome variable for the first phase of the study was worsening renal function, defined as in the ELITE study as an increase in SCr level during hospitalization of >0.3 mg/dL from admission. The principal endpoints for the 2nd phase of the study were inhospital mortality, length of stay and cost, 30-d mortality and readmission, and 6-mo mortality and readmission	N/A	WRF occurred in 28% of the cohort and was associated with male gender, HTN, rales > basilar, pulse >100 beats/min, SBP >200 mm Hg, and admission Cr>1.5 mg/dL. Based on the number of these factors, a pt's risk for developing WRF ranged between 16% (≤1 factor) and 53% (≥5 factors). After adjusting for confounding effects, WRF was associated with a significantly longer length of stay by 2.3 d, higher inhospital cost by \$1,758, and an increased risk of inhospital mortality (aOR:2.72; 95% CI:1.62-4.58)

					surgery during hospitalization			
Forman , 2004 <u>14715185</u> (342)	To determine the prevalence of WRF among hospitalized HF pts, clinical predictors of WRF, and hospital outcomes associated with WRF.	Cohort (retrospective)	1,004	HF pts hospitalized between July 1, 1997, and June 30, 1998, at 11 academic medical centers.	Pts were excluded if their hospitalizations were for an elective procedure (e.g., percutaneous transluminal coronary angioplasty, pacemaker, or cardioversion) or if their hospital length of stay was <2 d. Other exclusion criteria included severe aortic stenosis, anticipated cardiac transplantation, transfer from another inhospital setting, chronic dialysis, use of a LV assist device, high-output HF, age <20 y, concomitant use of an investigational product or device, and patients receiving chemotherapy. Subjects were also excluded if Crvalues were not documented at admission.	The principal outcome was WRF, defined as an increase in SCr of >0.3 mg/dL (26.5 µmol/L) from admission, consistent with several previous investigations; hospital length of stay, inhospital mortality, and complications occurring after the rise in creatinine. Complications were defined as shock, MI, stroke, major infection/sepsis, clinically significant hypotension, and new onset AF with ventricular rates >100 beats/min.	N/A	Among 1,004 HF pts studied, WRF developed in 27%. In the majority of cases, WRF occurred within 3 d of admission. History of HF or DM, admission Cr≥1.5 mg/dL (132.6 µmol/L), and SBP >160 mm Hg were independently associated with higher risk of WRF. A point score based on these characteristics and their RR ratios predicted those at risk for WRF. Hospital deaths aRR: 7.5; 95% CI: 2.9-19.3), complications (aRR: 2.1; 95% CI: 1.5- 3.0), and length of hospitalizations >10 d (aRR: 3.2, 95% CI: 2.2-4.9) were greater among pts with WRF

Klein, 2008 <u>19808267</u> (343)	To investigate the relation between admission values and changes in BUN and eGFR and rate of death by 60 d after discharge	Retrospective analysis of OPTIME-CHF (multicenter, randomized, double-blind, placebo- controlled trial)	949	Pts >18 y who had known systolic HF and had been hospitalized for exacerbation of no more than 48 h earlier	Active myocardial ischemia within the past 3 mo, AF with poor ventricular rate control (>110/min), sustained ventricular tachycardia or ventricular fibrillation, baseline SBP <80 mm Hg or SCr level >3.0 mg/dL (265 µmol/L)	Total no. of d hospitalized for cardiovascular causes within 60 d of randomization. D lost to follow-up and d deceased were prospectively included in the primary endpoint to avoid bias toward a therapy with an increased death rate.	N/A	Although both lower admission eGFR and higher admission BUN were associated with higher risk of death by 60 d after discharge, multivariable proportional-hazards analysis showed that BUN was a stronger predictor of death by 60 d than was eGFR (χ^2 =11.6 and 0.6 for BUN and eGFR, respectively). Independently of admission values, an increase of ≥10 mg/dL in BUN during hospitalization was associated with worse 60-d survival rate: BUN (per 5-mg/dL increase) had a HR: 1.08; 95% CI: 1.01-1.16). Although milrinone treatment led to a minor improvement in renal function by discharge, the 60-d death and readmission rates were similar between the
								readmission rates were similar between the milrinone and placebo groups

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; AE, adverse event; AF, atrial fibrillation; BUN, blood urea nitrogen; CHF, congestive heart failure; Cr, creatinine; CrCL, creatinine clearance; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; ELITE, Evaluation of Losartan in the Elderly; ESC, European Society of Cardiology; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; HTN, hypertension; ICD-9, international classification of diseases – 9th edition; IV, intravenous; LVSF, left ventricular systolic function; MI, myocardial infarction; NYHA, New York Heart Association; OPTIME-CHF, the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure study ; Pts, patients; RCT, randomized clinical trial; RI, renal insufficiency; SBP, systolic blood pressure; SCr, serum creatinine; TTE, transthoracic echocardiography; VMAC, Vasodilation in the Management of Acute Congestive Heart Failure; and WRF, worsening renal function.

Data Supplement 39. Nesiritide (Section 8.7)

Study Name, Author, Year	Aim of study	Study Type	Backgrou nd Therapy	Study Size	Etiology	Pt Po	oulation	Seve	erity	Endpo	pints	Mortality	Trial Duration (Years)	Statistical Analysis (Results)	Study Limitations	Complications /AEs
			Pre-trial standard treatment.	N (Total) n (Experimental) n (Control)	Ischemic/ Non- Ischemic	Inclusion Criteria	Exclusion Criteria	Severity of HF Symptoms	Study Entry Sverity Criteria	Primary Endpoint	Secondar y Endpoint	1st Year Mortality				
Nesiritide Study Group (NSGT), Colucci WS, 2000. <u>10911006</u> (344)	Determine efficacy/clinic al use of nesiritide for short term treatment of ADHF.	RCT	Chronic medication regimen N/A; any IV medication (dobutamin e, milrinone, dopamine, or vasodilator) was	Efficacy trial: 127 Comparative trial: 305. NESIRITIDE Efficacy trial: 43 (0.015 g/kg/min), 42 (0.03 mg/kg/min) Comparative trial: 103 (0.015mg/kg/min)	Efficacy trial: 46% ICM, Comparativ e trial: 54% ICM.	Symptomatic HF warranting hospitalizatio n for \geq 1 IV medication in addition to diuretics. Efficacy trial: PCWP \geq 18 mmHg, CI, <2.7L/min/m,	MI/UA within prior 48 h. Clinically important valvular stenosis, HCM or RCM, constrictive pericarditis, primary pHTN, or active myocarditis.	Efficacy trial: 98% NYHA III-IV mean PCWP 28 mmHg, mean CI 1.9 L/min/m2, mean SBP 116 mmHg. Comparativ	Symptomat ic ADHF requiring ≥1 intravenou s medication in addition to diuretics.	Efficacy: change from baseline PCWP @ 6 h after treatment Comparativ e: Global clinical status (independen	Efficacy trial: Global clinical status. Clinical symptoms Other hemodyn amic measure	N/A	<1y (10 mo enrollme nt 10/96- 7/97); Compara tive trial: 68-73% rx with nesiritide x 1-2 d 14-21%	Efficacy trial: PCWP - 6.0±7.2mm Hg (@ 0.015 g/kg/min) vs. - 9.6±6.2mm Hg (@ 0.03 g/kg/min) vs. +2.0±7.2mm Hg (placebo) Comparative	Subjective measureme nts of global clinical status and clinical symptoms. Background medical therapy not reported. 3. Change in	Asymptomatic/ mildly symptomatic hypotension. NSVT (Comparative trial).

	discontinue	, 100 (0.03	2, SBP, <u>></u> 90	e: 92%	t	ments.	x 3-5d,	trial: none.	PCWP is a	
	d; diuretics	mg/kg/min).	mmHg.	NYHA III-	assessment		9-14% x		surrogate	
	were held 4			IV.	by pt and		5d.	Efficacy trial:	outcome.	
	h before,	Efficacy trial: 42			investigator,			p<0.001		
	during, and	placebo,			5-point			(pairwise		
	6 h after	Comparative			scale:			with		
	study drug	Trial: 102			markedly			placebo).		
	infusion in	standard rx			better,					
	Efficacy	(investigator			better, no					
	trial.	choice of up to 2			change,					
		IV agents			worse, or					
		milrinone,			markedly					
		dobutamine,			worse).					
		nitroglycerin, or			Clinical					
		nitroprusside,			symptoms					
		along with			(dyspnea					
		diuretics and			and fatigue,					
		other oral HF			jointly pt					
		medications).			and					
					investigator					
					assessment					
					, 3 point					
					scale:					
					improved,					
					no change,					
					or worse).					

Vasodilation	To compare	RCT	Diuretics	489	Ischemic	Dyspena at	SBP <90 mm	100%	NYHA IV	PCWP	Comparis	N/A	Enrollme	PCWP at 3 h	Subjective	Generalized
in the	the efficacy		86%	100	55%	rest due to	На	NYHA IV at	at	Pt self-	ons		nt	(mean (SD))	measureme	headache (8%
Managemen	and safety of		ACEL 60%	204(nesiritide)	0070	decompensat	cardiogenic	time of	nresentatio	assessment	hetween		October	Nesiritide:	nts of global	nesiritide group
t of Acute	intravenous		ARB 11%	204(10011000)		ed CHF	shock or	nresentatio	n (dyspnea	of dyspnea	nesiritide		1999 and	-5.8 (6.5)	clinical	vs 20%
CHE	nesiritide		heta	1/3		Severe	volume	n/entry or at	at rest)	@ 3 h of	and			mmHa*	status and	nitroalycerin
	intravenous		blockers	(nitroalycerin)		enough	depletion any	loast	at restj.	study drug	nitroalyce		2000 (10	Nitroalycerin	clinical	aroun)
(VNAC),	nitroglycorin		33% oral	(Introgrycenn)		dycopoo to	condition that	dyconoio at		infusion (3	rin:		2000 (10 mo):		symptoms	group) Asymptomatic
2002.	nillogiycenn,		55%, Ulai			roquiro	would			ninusion (5	Onact of		nio), otudu	3.0 (3.3) mmЦa	Change in	(9%) and
$\frac{11911700}{(245)}$	anu placebo.					heenitelizatio	would	rest, 04 %		point scale.	offection		Sludy	Disseks: 0		
(345)			33%, CCB							improved,			urug		POWPISa	symptomatic
			14%,			n & IV	aniv	NYHA III-IV		no change,	PCVP.		infusion,		surrogate	(4%)
			algoxin			therapy.	vasodilator,	(prior to		worse).	Effection		median	ABSOLUTE	outcome.	nypotension in
			60%,			A cardiac	acutely	decompens			PCWP@		time 24-	BENEFILIN		nesiritide
			warfarin			etiology for	unstable	ation), 19%			24 hr atter		25 h.	PCWP		group.
			33%, ASA			dyspnea was	clinical status	SBP			start of			Nesiritde vs.		
			45%,			established	that would not	<100mmHg			study			Placebo : -		
			statins			by estimated	permit a 3 h	•			drug.			3.8 mmHg.		
			25%.			or measured	placebo				Self-					
						elevation of	period, use of				assessed			*p<0.05		
						cardiac filling	IV				dyspnea			(compared		
						pressures	nitroglycerin				and			with		
						(PCWP <u>></u> 20	that could not				global			placebo,		
						mm Hg in	be withheld,				clinical			compared		
						catheterized	mechanical				status.			with		
						pts) and > 2	ventilation,				Overall			nitroglycerin)		
						of the	and				safety					
						following: (a)	anticipated				profile.					
						JVD, (b)	survival of				Use of			N/A		
						PND or 2-	<30-35 d.				other IV					
						pillow					vasoactiv					
						orthopnea					е					
						within 72 h					agents or					
						before study					diuretics.					
						entry, (c)					Effects on					
						abdominal					other					
						discomfort					hemodyn					
						due to					amic					
						mesenteric					variables					
						congestion										
						or (d) a CXR										
						consistent										
						with										
						decompensat										
						ed CHF										

Prospective	To evaluate	RCT	Diuretics	237	N/A	1. Pt	1. Pt not a	61% NYHA	Dyspnea at	No pre-	N/A	N/A	11 mo	Total	No pre-	Asymptomatic
Randomize	the safety		77%.			presented to	candidate for	III-IV at	rest or with	defined			enrollme	hospital LOS	defined	hypotension
d Outcomes	and efficacy		ACEI 58%	120		FD with a	observation	baseline	<20 feet	primary			nt period	through	primary end-	(10% with
Study of	of a standard		ARB 14%.			medical Hx	(e.g.,		ambulation	endpoints.			(3/01-	study Day	points:	nesiritide vs
Acutely	care		beta	117		with HF.	presented with			Efficacy			1/02):	30 excluding	49% of pts	3% with
Decompens	treatment		blockers			along with	any condition			measures			mean	index visit	were NYHA	placebo.
ated	regimen with		46%.			fluid overload	that obviously			included			study	(davs)	I-II or	p=0.03).
Congestive	the addition		aldosteron			or elevated	mandated			admission			drug	Mean + SD:	without any	P):
HF Treated	of either		e			cardiac filling	hospital			to the			infusion	7.1 + 4.25	Hx of HF.	
Initially as	nesiritide or		antagonist			pressures by	admission.			hospital			time ~20	(placebo +		
Outpts With	placebo in		14%. CCB			clinical	such as acute			after the			h (same	standard		
Nesiritide	ED/OU pts		22%.			assessment.	MI. or			index visit.			for both	care) vs. 3.1		
(PROACTIO	with		digoxin			dyspnea at	requirement			readmission			groups);	+ 2.20		
N), Peacock	decompensa		48%			rest or with	for invasive			within 30 d			30d	(nesiritide +		
IV WF,	ted HF.		placebo vs.			minimal	monitoring or			for any			follow-up	standard		
2005.			34%			exertion	mechanical			reason,			period.	care); 2.		
16183441			nesiritide.			(defined as	ventilation.			length of			'	Subjects		
(346)			nitrates			walking 20	including			stay in the				readmitted		
· · /			45%,			ft), and	BPAP);			hospital,				after index		
			statins			judged to	2. SBP <90			assessment				hospitalizatio		
			29%,			require >12 h	mmHa;			of dyspnea,				n, excluding		
			ASA 46%.			of hospital	3. Admitted to			and				those who		
						therapy for	the ED			resource				died or were		
						HF.	primarily for a			utilization.				lost to		
						2. Evidence	diagnostic			Safety				follow- up:		
						of HF as	evaluation			measures				23%		
						primary	(e.g., rule out			included:				(placebo +		
						etiology of	ACS);			vital signs,				standard		
						the dyspnea	4. Receiving			AEs				care) vs. 9%		
						required >2	chronic			(defined as				(nesiritide +		
						of the	dialysis;			any pre-				standard		
						following: a)	5. Had cardiac			existing				care).		
						PND or 2-	markers			medical						
						pillow	indicative of			event that				1. p=0.032		
						orthopnea	myocardial			worsened or				2. p=0.049		
						within 72 h	necrosis;			any new						
						before the	6. Medical			medical				N/A		
						start of study	condition so			event that						
						drug; b) JVD;	severe that 30			occurred						
						c) abdominal	d survival was			during						
						symptoms,	unlikely;			administrati						
						as manifest	7. Medical			on of study						
						by	condition			drug,						

						discomfort, decreased appetite, or nausea attributed by the investigator to be due to hepatosplanc hnic congestion; d) ≥5lb weight gain in the previous month; e) CXR with findings indicative of HF; or f) pulmonary rales.	(such as cardiogenic shock or volume depletion) that contraindicate d use of IV vasodilatators. 8. If within 2 h before the start of study drug administration pt received IV vasodilatators or oral ACEI; or they were anticipated to require either IV vasodilators during the first 3 h after the start of study drug or oral ACEI during the first 30 min after the start			whether or not related to study drug), and SAEs (defined as AEs that were life- threatening, resulted in hospitalizati on, or death).						
Risk of Worsening Renal Function With Nesiritide in Pts With Acutely Decompens ated HF, Sackner- Bernstein JD, 2005. <u>15781736</u> (347)	To investigated the renal effects of nesiritide as treatment for ADHF.	Meta- analy sis	Variable (see original RCTs included in meta- analysis).	1269 797 472	N/A (see original RCTs)	Five RCTs (1288 pts were enrolled and randomized, 1269 underwent assessment of renal function) reported the effects of nesiritide on renal function as measured	of study drug.	See original RCTs	See original RCTs	Studies were reviewed for the incidence of worsening renal function (increase in SCr >0.5 mg/dL recorded at any time during the input portion	N/A	N/A	N/A	WRF: 21% (nesiritide) vs. 15% (control). WRF requiring medical intervention: 11% (nesiritide) vs. 4% (control) WRF requiring	Meta- analysis Inability to adjust statistically for differences in other factors beyond treatment group assignment that could have	N/A

						lass the a				af the a 1 (- 1)				المتعام والمتعاد والم	influence i	
						by the				or the that).						
						rrequency of								: 2% VS 2%.	the	
						increased									developmen	
						(SCr) <u>></u> 0.5								1) p=0.001	t of renal	
						mg/dL								2) p=0.03	dysfunction.	
						forming the								3) p=0.71	WRF is a	
						basis of									surrogate	
						meta-								1) RR _{мн} :	marker for	
						analyses.								1.54; 95%	clinical	
														CI: 1.19 to	outcome.	
														1.98; 2)		
														RR _{MH} : 2.29;		
														95% CI:		
														1.07-4.89:		
														3) 95% CI:		
														0.50-2.76:		
Short-term	То	Meta-	Variable	862	N/A (see	Randomized	N/A	Variable:	See	30 d	N/A	N/A	N/A	1) 30 d	1) The	
Risk of	investigate	analy	(see		original	double-blind		60-98%	original	survival was				mortality:	NSGET.	
Death	the safety of	sis	original	485	RCTs)	study of pts		NYHA III-	RCTs	assessed by				7.2%	VMAC, and	
After	nesiritide	0.0	RCTs			with acutely		IV overall		meta-				(nesiritide)	PROACTIO	
Treatment	relative to		included in	377		decompensat		79% NYHA		analysis				vs 4 0%	N studies	
With	noninotrope-		meta-	011		ed HF		III-IV		using a				(control)	were not de-	
Nesiritide	hased con		analysis)			therany				fixed-effects				(control).	signed to	
for	trol		analysis).			administered				model and				1) n=0 059	definitively	
Decompens	theranies					as single				time-				1) p 0.000.	determine	
ated HF	nrimarily					infusion (>6				dependent				1) RR· 1 7/·	whether	
	consisting of					h) instrone				riek hv				95% CI	nesiritide is	
Analysis of	diuretics or					n), monope				Kanlan				0 07 3 12	associated	
DCT _c	vasodilators					mandated as				Mojor				0.37-3.12.	with rick of	
NOTS, Sooknor	vasouliators.														dooth	
Sackner-						control, and				analysis					uealii,	
										WILLI COX					aithough	
JD, 2005.						monality				proportional					each	
15840865						(NSGET,				nazaros					prospectivel	
(348)						VMAC,				regression					y monitored	
						PROACTION				modeling.					for deaths	
).									tollowing	
															therapy.	
															2) None of	
															the 3 studies	
															collected	
															complete	
															information	
															on the use	

															of additional medications or procedures through the 30 d follow- up period. (possible confounders). 3) It is possible that these results are due to chance.	
BNP- CARDS, Witteles RM, 2007. <u>17980248</u> (349)	To evaluate the impact of nesiritide on renal function in pts with acute decompensa ted HF and baseline renal dysfunction.	RCT	Beta blocker 65%, ACEI/ARB 49%, aldosteron e antagonist 13%, digoxin (26%), amiodaron e (21% nesiritide vs. 6% placebo), CCB 24%, hydralazine (5% nesiritide vs. 25% placebo).	75 39 36	CAD: 77% (nesiritide) vs. 56% (control)	Newly admitted with primary dx of ADHF. Calculated GFR (using the Cockcroft- Gault formula) between 15 to 60 ml/min (changed from 15 to 50 ml/min in December 2004 to be consistent with the published definition of "moderate renal impairment"). Age \geq 18 y.	Baseline SBP <90 mm Hg. Hemodynamic ally significant aortic stenosis. Need for IV vasodilator therapy. Admission to ICU. Hx of cardiac transplantation Allergy to nesiritide. Prior enrollment in the trial.	N/A	N/A	A significant decline in renal function (defined as a peak SCr increase of ≥20% at any time during the first 7 d of hospitalizati on compared with the admission creatinine). Change in SCr from the admission value to discharge and/or Day 7 of hospitalizati on, whichever	Net negative diuresis ≥1 I/day while on the infusion. Change in weight during the infusion. Need to discontinu e the infusion due to hypoten- sion. Total diuretic use while receiving the infusion. Median length of stay. Death or	N/A	30 mo (3/04 - 8/06); up to 30 d follow up.	No significant differences in the incidence of a 20% creatinine rise (23% nesiritide vs. 25% placebo). No significant difference in the change in SCr (-0.05 vs. +0.05 mg/dl). No significant differences in the secondary end points of 3a) weight (- 2.19 vs 1.58 kg), 3b) IV	Small # of participants still could allow for a type II error. Exclusion of important subgroups of ADHF pts, including those needing intensive care and those requiring IV vasodilator therapy; the results of this trial certainly do not exclude a potentially important effect of nesiritide (positive or	13% discontinued infusion d/t hypotension; 10% transferred to ICU; 10% 30 d mortality; 33% 30 d mortality/readm ission (of note: no difference in these SAE/complicati ons compared with placebo control).

	,							,						~	~	
	1		1				1	1		was sooner.	rehospitali			furosemide	negative) on	
	1		1				1	1		1	zation			(125 vs. 107	renal	
	1		1				1	1		1	within 30			mg), 3c)	function in	
	1		1				1	ļ			d.			discontinuati	those pts.	
	1		1				1	1		1	Resource			on of	Although	
	1		1				1	ļ			utilization			infusion due	trial was not	
	1		1				1	1		1	-defined			to	powered to	
	1		1				1	1		1	by need			hypotension	evaluate	
	1		1				1	1		1	for			(13% vs.	mortality	
	1		1				1	ļ			dialysis			6%) 3d)	and hospital	
	1		1				1	1		1	intensive			30 d	readmission.	
	1		1				1	1		1	care			death/hospit	there were	
	1		1				1	ļ		·	monitorin			al	nonsignifica	
	1		1				1	1		1	a			readmission	nt trends	
	1		1				1	1		1	9, nulmonar			(33% vs	observed in	
	1		1				1	1		1	v arterv			25%)	favor of	
	1		1				1	1		1	catheteriz			2070)	nlacebo	
	1		1				1	1		1	ation and			1) n=0.85	Due to the	
	1		1				1	1		1	intubation			2) $p = 0.00$	relatively	
	1		1				1	1		1	intubation			2/p=0.40 3a) n=0.26	small	
	1		1				1	1		1	-			3a) p=0.20 3b) n=0.53	sample size	
	1		1				1	1		1	ľ			3c) p=0.33	the lack of	
	1		1				1	1		1	ľ			2d = 0.20		
	1		1				1	1		1	ľ			30) p=0.43	statistical	
	1		1				1	1		1	ľ				significance	
	1		1				1	1		1	ľ				does not	
	1		1				1	1		1	ľ				rule out	
	1		1				1	1		1	ľ				differences	
	1		1				1	1		1	ľ				in these	
	<u> </u>												<u> </u>		outcomes.	
Follow-Up	To test the	RCT	Diuretics	138	65% ICM	Adults (aged	SBP<90 mm	100%	N/A	Safety, as	N/A	N/A	Enrollme	The	The study	AEs related to
Serial	feasibility of		100%, beta			<u>></u> 18 y).	Hg.	NYHA III-IV		predetermin	ľ		nt period	frequency of	was not	renal function
Infusions of	nesiritide as		blockers	49 (0.005		NYHA III or	Recipient of or	1		ed by the	ľ		N/A; 12	all-cause	powered to	(i.e., abnormal
Nesiritide,	adjunctive		75%, ACEI	g/kg/min) 46		IV HF for <u>></u> 60	listed for	ļ		ability to	ľ		wk	hospitalizatio	assess	renal function,
FUSION I,	therapy for		56%, ARB	(0.010 g/kg/min)		d before	cardiac	ļ		tolerate out-	ľ		follow-	n through wk	outcomes.	acute renal
Yancy CW,	pts with		17%, oral			randomizatio	transplantation	ļ		pt infusions	ľ		up.	12 was		failure,
2006.	advanced HF		nitrates	43 (standard		n.	Placement of	1		of nesiritide	ľ		-	lower in pts		increased
16828598	and a Hx of		49%,	care)		>2 hospital	a BiV PM	ļ		without	ľ			receiving SC		blood urea
(350)	recurrent		aldosteron	,		admissions	within	ļ		evidence of	ľ			plus either		nitrogen,
· · /	hospitalizatio		е			or	previous 60 d	ļ		an	ľ			nesiritide		increased SCr.
	ns.		antagonist			unscheduled	or AICDd	ļ		increased	ľ			0.005		and oliguria, as
			36% IV			outot visits	within	1		AE rate	ľ			a/ka/min or		defined in
	1		milrinone			requiring IV	previous 30 d	ļ		compared	ľ			nesiritide		Coding
	1		28% IV			vasoactive	Currently	1		with SC	ľ			0.010		Symbols for a
						1.000000000						4	1	1 0.010	1	

	dobutamin		treatment for	receiving long-		g/kg/n	nin	Thesaurus of
	e 10%, IV		ADHF within	term dialysis		than i	n those	Adverse
	dopamine		the 12 mo	or likely to		receiv	ing SC	Reaction
	11%.		preceding	require		only.	Also,	Terms),
			randomizatio	dialvsis during		pts in	the	occurred in
			n.	the study		nesirit	ide	22% of all pts.
			4. >1	period.		aroup	s were	An increase in
			admission in	Inability to		alive	and out	SCr to >0.5
			the	complete a 6		of the		ma/dl higher
			preceding 5	m walk test.		hospit	al for	than baseline
			to 30 d.	Evidence of		more	davs	occurred at
			5 6MWT	acute MI		(medi	an 84	some time
			<400 m	within		d for t	he 2	during the
			6 Currently	previous 30 d		aroun	s) than	study in 18 of
			receiving	providuo de ur		those	in the	41 nts (44%) in
			optimal HF			SC-or	lv	the standard
			treatment			aroup	,	care-only
			with long-			(medi	an 77	aroup, 17 of 49
			term oral			d).		pts (35%) in
			medications.			-,-		the nesiritide
						All car	ise	0.005 a/ka/min
						hospit	alizatio	group, and 16
						n: p=0	0.037	of 46 pts (35%)
						(nesir	tide	in the nesiritide
						0.005		0.010 a/ka/min
						ma/ka	/min	aroup
						vs. sta	andard	(p=0.614).
						care a	lone).	The most
						p=0.0	11	frequently
						(nesir	tide	reported AEs
						0.010		among all pts
						ma/ka	/min	with RI were
						vs. sta	andard	worsening HF
						care a	llone).	(42%),
						Davs	alive	asymptomatic
						and o	ut of	hypotension
						hospit	al:	(16%),
						p=0.0	05	dyspnea
						(nesir	tide	(13%), and
						vs. sta	andard	symptomatic
						care c	only).	hypotension
							• •	(12%).

Cocord		DOT	Leen	011	C10/	50 UF	00 <00	1000/	NI/A	Time to all	No. of	NI/A	Enrollmo		"Descuse of	
Second		RUI	Loop	911	04 %		SDF -90		IN/A		INO. 01	N/A		All-Cause	Decause of	301 20.5 mg/ul
Follow-Up	the potential		diuretics		Ischemic	nospitalizatio	mmHg.	NYHA III-IV		cause death	cardiovas		nt 4/04-	mortality or	the much	in 32.1%
Serial	clinical utility		75%, ACEI	605		ns or the	Dependence			or the first	cular and		6/06.	cardiovascul	lower than	(nesiritide) vs.
Infusions of	of outpt,		43%, ARB			equivalent	on (or inability			hospitalizati	renal		Follow-	ar and renal	expected	38.8%
Nesiritide,	intermittent		14%, beta	306		within 12 mo,	to discontinue)			on for	hospital		up ended	hospitalizatio	event rates,	(placebo),
FUSION II,	nesiritide		blocker			with the most	intermittent or			cardiovascul	admission		in 12/06.	ns through	FUSION II	p=0.046.
Yancy CW.	infusions in		65%.			recent within	continuous IV			ar or renal	S.			Week 12	was	
2008.	ACCF/AHA		aldosteron			the prior 60	vasoactive			causes from	D alive			occurred in	underpower	
19808265	stage C/D		e			d (A	medications			randomizati	and out of			36.8% of the	ed to	
(351)	HE nts		antagonist			hospitalizatio	>2 output			on through	the			nlacebo	evaluate the	
(001)	Thi pto.		37%			n equivalent	infusions of			Wook 12	hospital			combined	effect of	
			or 70,				wasastiva			WEEK 12.	Timo to			aroup and	enect of	
							thereau within							group and		
			18%, ICD			asan	therapy within				cardiovas			30.7% of the	the primary	
			39%, CRT			unscheduled	30 d without a				cular			nesiritide	end point.	
			24%.			outpt	hospitalization				death, all			combined	The	
						treatment for	Biventricular				evaluated			group. No	resulting	
						ADHF with	pacemaker				through			statistically	power	
						an	within 45 d or				Wk 12.			significant	calculation	
						intravenous	a single- or				QoL as			difference in	based on	
						vasoactive	dual-chamber				assessed			secondary	the	
						drug or 3	pacemaker,				by			end-points.	observed	
						unscheduled	ICD within 15				change in				placebo	
						intravenous	d.				the KCCQ			Log-rank	event rates	
						diuretic	Cardiogenic				summary			test p=0.79	vielded only	
						treatments	shock or				score				37% nower	
						for ADHE	volume				from			HR: 1.03-	to detect a	
						within 60 d)	depletion				haseline			05% CI:	conservative	
						1 V = -10%	Chronio				to Wk 13			0.82.1.2	rolativo rick	
						LVLI ~40 /0	dialvaia				10 WK 13.			0.02-1.3.	reduction of	
						WILITIT 24 WK.	ulalysis.									
						Investigator									15%	
						documentatio									between	
						n of									groups. In	
						consistent									retrospect, a	
						NYHA III or									sample size	
						IV symptoms									of 3500 pts	
						during the									would have	
						previous 60 d									been	
						(estimated									needed for	
						creatinine									90% power	
						clearance									to detect this	
						<60 mL/min									treatment	
						calculated by									effect.	
						the									However. it	

						Cockcroft-									should be	
						Gault									noted that	
						equation; 24									on the basis	
						h urine									of the actual	
						collection									results, the	
						was also									wide	
						required for									confidence	
						NYHA class									limits with a	
						III pts).									nearly	
						Optimal									indistinguish	
						treatment									able event	
						with oral									rate	
						medications									between	
						and device									active	
						therapy									treatment	
						unless a									and placebo	
						documented									exclude a	
						contraindicati									benefit in	
						on or									the primary	
						intolerance									end point as	
						was present.									small as	
															15%,	
															making it	
															relatively	
															unlikely that	
															an important	
															positive	
															effect was	
															missed."	
Acute Study	To evaluate	RCT	ACEI/ARB	7007	60% ICM	Age >17 y.	Hospitalized	100%	NYHA III-	Two	Self-	30 d	Enrollme	No	Primarily	30 d all-cause
of Clinical	the effect of		60%, beta			Pts	>48 h before	NYHA III-IV	IV; at least	coprimary	reported	mortality:	nt 5/07-	significant	addressed	mortality and
Effectivenes	nesiritide, in		blocker	3496 (nesiritide)		hospitalized	randomization.	at time of	1 of	end points:	overall	4.0%	12/10;	effect on 30	safety	worsening
s of	addition to		58%,			for ADHF.	Probable	enrollment.	following	Composite	well-being	placebo	study	d	concerns,	renal function:
Nesiritide in	standard		Aldosteron	3511 (placebo)		Pts	discharge in		signs:	of HF	at 6 and	vs. 3.6%	drug	rehospitaliza	thus broad	31.4% vs.
Decompens	care, on		е			hospitalized	<24h.		respiratory	rehospitaliz	24 h after	nesiritide.	infusion,	tion (6.0%	range of pts.	29.5%
ated HF,	rates of self-		antagonist			for a reason	Hypotension		rate <u>></u> 20	ation and	study		at least	nesiritide vs.	Rudimentary	(Nesiritide vs.
ASCEND-	reported		28%,			other than	risk.		breaths/mi	all-cause	drug		24 h and	6.1%	, pt	Placebo,
HF,	dyspnea at 6		nitrate			ADHF, but	Uncontrolled		n or	mortality	initiation.		up to 7 d.	placebo) or	assessment	p=0.11).
O'Connor	and 24 h,		23%,			diagnosed	hypertension.		pulmonary	from	Composit			30 d	of dyspnea.	2. Higher rate
CM, 2011.	rehospitalizat		hydralazine			with ADHF	Experimental		congestion	randomizati	e of			mortality	Low clinical	of hypotensive
<u>21732835</u>	ion for HF or		7.4%, loop			within 48 h of	medication		or edema	on through	persistent			(3.6%	event rate.	events
(352)	death from		diuretic			admission.	(including		with rales	D 30.	or			nesiritide vs.		amongst
	any cause at		95%,				nesiritide) or		>1/3 way	Change in	worsening			4.0%		nesiritide group

30 d, and	inotropic	device use.	up lung	self-	HF and	placebo).	(26.6% vs.
renal	agent 4%,	Pregnant or	field; at	reported	all-cause	p=0.31	15.3%.
dysfunction.	vasodilator	suspected	least 1 of	dvspnea	mortality	Nesiritide	p<0.001).
.,	15%.	pregnancy.	following	symptom at	from	improved	r /
		P - 0 7	obiective	6 and 24 h	randomiz	dvspnea at 6	
			measures:	after study	ation	h and 24 h	
			congestion	drug	through	after	
			or edema	initiation.	hospital	treatment	
			on CXR.		discharge	compared to	
			BNP >400			placebo but	
			pa/ml or		3. # of	did not reach	
			NT-pro-		days alive	prespecified	
			BNP		and	level for	
			>1000		outside	significance.	
			pa/ml.		the	p=0.03 (6hr).	
			PCWP >20		hospital	p=0.007	
			mmHa.		from	(24hr)	
			LVEF		randomiz	3) No	
			<40% in		ation	difference in	
			prior 12		through	rate of	
			mo.		Day 30.	worsening	
					Composit	renal	
					e of CV	function.	
					death and	p=0.11.	
					rehospitali	P	
					zation		
					due to CV		
					causes		
					from		
					randomiz		
					ation		
					through		
					Day 30		

ACCF/AHA indicates American College of Cardiology Foundation/American Heart Association; ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; ADHF, acute decompensated heart failure; AE, adverse events; ARB, angiotensin-receptor blocker; ASA, aspirin; BPAP, bilevel positive airway pressure; BNP, b-type natriuretic peptide; CAD, coronary artery disease; CCB, calcium channel blocker; CHF, congestive heart failure; CI, confidence interval; CRT, cardiac resynchronization therapy; CV, cardiovascular; CXR, chest X-ray; ED, emergency department; FUSION, Follow-Up Serial Infusions of Nesiritide; GFR, glomerular filtration rate; HCM, hypertrophic cardiomyopathy; HF, heart failure; HR, hazard ratio; Hx, history; ICD, implantable cardioverter-defibrillator; ICM, ischemic cardiomyopathy; ICU, intensive-care unit; IV, intravenous; JVD, jugular venous distention; KCCQ, Kansas City Cardiomyopathy Questionnaire; LOS, length of stay; MI, myocardial infarction; N/A, not applicable; NSGET, Nesiritide Study Group Efficacy Trial; NSVT, non-sustained ventricular tachycardia; NYHA, New York Heart Association; OU, observation unit; PCWP, pulmonary capillary wedge pressure; pHTN, pulmonary hypertension; PND, paroxysmal nocturnal dyspnea; PROACTION, Prospective Randomized Outcomes study of Acutely decompensated CHF Treated Initially as Outpatients with Nesiritide; Pt, patient; RCM, restrictive cardiomyopathy; RCT, randomized controlled trial; RI, renal insuficiency; RR, relative risk; RR_{MH}, relative risk Mantel-Haenszel fixed-effects model; SAE, serious adverse event; SBP, systolic blood pressure; SC; SCr, serum creatinine; SD, standard deviation; UA, unstable angina; and VMAC, Vasodilator in the Management of Acute Heart Failure.

Data Supplement 40. Hospitalized Patients – Oral Medications (Section 8.8)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Popu	lation	Results	P Values & 95% CI:	OR: HR: RR:	Study Limitations
				Inclusion Criteria	Exclusion Criteria				
Beta Blockers During and at Di	scharge of HF Hospitali	ization							
Fonarow GC, Abraham WT, Albert NM et al. Influence of Beta blocker Continuation or Withdrawal on Outcomes in Pts Hospitalized with HF: Findings From the OPTIMIZE-HF Program. J Am Coll Cardiol 2008 July 15;52(3):190-9. <u>18617067 (</u> 353)	To determine whether beta-blocker therapy should be continued or withdrawn during hospitalization for decompensated HF.	Registry (OPTIMIZE-HF)	5791 pts admitted with HF at 91 academic and community hospitals throughout the U.S.	Hospitalization for episode of worsening HF as primary cause of admission.	N/A	Among 2373 pts eligible for beta blockers at discharge: 1350 (56.9%) receiving beta blockers before admission and continued on therapy, 632 (26.6%) newly started, 79 (3.3%) in which therapy was withdrawn, and 303 (12.8%) eligible but not treated. Continuation of beta blockers with lower risk for death (HR: 0.60; p=0.04) and death/rehospitalization (HR: 0.69; p=0.01). Withdrawal of beta blocker associated with higher risk for mortality (HR: 2.3; p=0.01), but with similar risk as HF pts eligible but not treated with beta blockers.	95% CI: 0.37- 0.99; p=0.04	HR: 0.60	Registry
Fonarow GC, Abraham WT, Albert NM et al. Dosing of Beta blocker Therapy Before, During, and After Hospitalization for HF (OPTIMIZE-HF). <i>Am J Cardiol</i> 2008 December 1;102(11):1524-9. <u>19026308 (</u> 354)	The doses of beta blockers used in pts with HF in routine clinical practice before, during, and after hospitalization for HF.	Registry (OPTIMIZE-HF).	5791 pts admitted with HF at 91 academic and community hospitals throughout the U.S.	Hospitalization for episode of worsening HF as primary cause of admission.	None	The mean total daily dose for beta blockers before hospital admission <1/2 the recommended target dose (carvedilol 21.5 +/- 17.8 mg and metoprolol succinate 69.2 +/- 51.9 mg), with infrequent up- or down-titration during the HF hospitalization. 2/3 of pts had no change in their beta blocker doses in the first 60-90 d after hospital discharge. At 60-90 d postdischarge follow-up, only 17.5% and 7.9% of pts treated with recommended target doses of carvedilol and metoprolol succinate	N/A	N/A	Registry

Gattis WA, O'Connor CM, Gallup DS, Hasselblad V, Gheorghiade M. Predischarge Initiation of Carvedilol in Pts Hospitalized for Decompensated HF: Results of the Initiation Management Predischarge: Process for Assessment of Carvedilol Therapy in HF (IMPACT-HF) trial. <i>J Am Coll Cardiol</i> 2004 May 5;43(9):1534-41. <u>15120808 (</u> 355)	To evaluate if predischarge carvedilol initiation in stabilized pts hospitalized for HF increased the number of pts treated with beta-blockade at 60 d after randomization without increasing side effects or length of hospital stay.	RCT (IMPACT-HF)	363	Pts hospitalized for HF.	N/A	At 60 d 165 pts (91.2%) randomized to predischarge carvedilol initiation treated with a beta blocker, compared with 130 pts (73.4%) randomized to initiation postdischarge (p < 0.0001). Predischarge initiation was not associated with increased risk of SAEs. The median length of stay was 5 d in both groups.	p<0.0001	N/A	N/A
Metra M, Torp-Pedersen C, Cleland JG et al. Should Beta- blocker Therapy be Reduced or Withdrawn After an Episode of Decompensated HF? Results From COMET. <i>Eur J Heart Fail</i> 2007 September;9(9):901-9. <u>17581778 (</u> 356)	To study the relationship between changes in beta blocker dose and outcome in pts surviving a HF hospitalization in COMET.	Retrospective subgroup analysis of RCT.	3029	Pts with LVEF <35, NYHA class II-IV HF hospitalized for HF were subdivided on the basis of the beta blocker dose administered at the visit following hospitalization, compared to that administered before.	Intolerance to beta blockers	752/3029 pts (25%) with HF hospitalization. 61 (8%) had beta- blocker treatment withdrawn, 162 (22%) had a dose reduction and 529 (70%) maintained on the same dose. 1 and 2 y cumulative mortality rates 28.7% and 44.6% for pts withdrawn from study medication, 37.4% and 51.4% for those with a reduced dosage, 19.1% and 32.5% for those maintained on the same dose (HR: 1.59; 95% CI: 1.28 to 1.98; p<0.001). No interaction with the beneficial effects of carvedilol, compared to metoprolol.	95%CI: 1.28- 1.98; p<0.001	HR:1.59	Post-hoc analysis
Fonarow GC, Abraham WT, Albert NM et al. Prospective Evaluation of Beta-blocker use at the Time of Hospital Discharge as a HF Performance Measure: Results From OPTIMIZE-HF.J Card Fail 2007;13:722-31. <u>17996820 (</u> 357)	To prospectively evaluate beta blocker use at hospital discharge as an indicator of quality of care and outcomes in pts with HF.	Registry	20118	Data from the OPTIMIZE-HF registry for pts hospitalized with HF from 259 hospitals were prospectively collected and analyzed. 20118 pts with systolic dysfunction were included.	N/A	At discharge, 90.6% of pts eligible to receive beta blockers, 83.7% ACEI or ARB. Eligible pts discharged with beta blockers significantly more likely to be treated at follow-up than those not discharged with beta blockers (93.1% vs. 30.5%; P<0.0001). Discharge use of beta blockers in eligible pts lowers risk of death (HR: 0.48; 95% CI: 0.32-0.74; p<0.001) and death/rehospitalization (OR: 0.74; 95% CI: 0.55-0.99; p=0.04).	95% CI: 0.32- 0.74; p<0.001	HR: 0.48	Registry

carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge.			91 hospitals participatir prespecified 60-90 d fo from March 2003 to December 2004.	ng with ollow-up		Discharge carvedilol associated with a significant reduction in mortality (HR: 0.46; p=0.0006) and mortality and rehospitalization (OR: 0.71, p=0.0175) compared to no predischarge beta blocker.			
scharge of HF Hospital	zation								
To determine whether the sequence of initiation of beta blockers or ACEI during hospitalization make a difference in outcomes.	RCT	101	Mild to moderate HF and LVEF \leq 35%, who were not receiving ACEI, beta blocker, or ARB therapy randomized to open-label bisoprolol (target dose 10 mg QD; n=505) or enalapril (target dose 10 mg BID; n=505) for 6 mo, followed by their combination for 6 to 24 mo.	N/A		Bisoprolol-first treatment noninferior to enalapril-first treatment (HR: 1.17). Primary end point in 178 pts allocated to bisoprolol-first treatment vs 186 allocated to enalapril-first treatment (HR: 0.94; 95% CI: 0.77-1.16). Bisoprolol-first treatment: 65 pts died, vs 73 with enalapril-first treatment (HR: 0.88; 95% CI: 0.63 to 1.22), and 151 vs 157 pts hospitalized (HR: 0.95; 95% CI: 0.76-1.19).	p=ns	HR: 0.94	N/A
To evaluate the effect of developing and implementing CPGs on the quality of care given to pts receiving ACEI for systolic HF.	RCT	20 cardiology units in France (Experimental group (n=10) in each experimental unit, doctors were involved in drafting and implementing CPGs; those at control units were not.)	HF pts <75 y old	Age >75	у	Compliance with the CPG relating to ACEI dose on discharge higher in the experimental group (p=0.003).	N/A	N/A	N/A
i	carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge. charge of HF Hospitali To determine whether the sequence of initiation of beta blockers or ACEI during hospitalization make a difference in outcomes. To evaluate the effect of developing and implementing CPGs on the quality of care given to pts receiving ACEI for systolic HF.	carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge. RCT charge of HF Hospitalization of beta blockers or ACEI during hospitalization make a difference in outcomes. RCT To evaluate the effect of developing and implementing CPGs on the quality of care given to pts receiving ACEI for systolic HF. RCT	carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge. Image: Charge of HF Hospitalization To determine whether the sequence of initiation of beta blockers or ACEI during hospitalization make a difference in outcomes. RCT 101 To evaluate the effect of developing and implementing CPGs on the quality of care given to pts receiving ACEI for systolic HF. RCT 20 cardiology units in France (Experimental group (n=10) in each experimental unit, doctors were involved in drafting and implementing CPGs; those at control units were not.) scharge of HF Hospitalization	carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge. 91 hospitals participati prespecified 60-90 d fo from March 2003 to December 2004. To determine whether the sequence of initiation of beta blockers or ACEI during hospitalization make a difference in outcomes. RCT 101 Mild to moderate HF and LVEF ≤35%, who were not receiving ACEI, beta blocker, or ARB therapy randomized to open-label bisoprolol (target dose 10 mg QD; n=505) or enalapril (target dose 10 mg QD; n=505) or enalapril (target dose 10 mg BID; n=505) or enalapril (target dose 10 mg BID; n=505) or enalapril (target dose 10 mg BID; n=505) or 6 mo, followed by their combination for 6 to 24 mo. To evaluate the effect of developing and implementing CPGs on the quality of care given to pts receiving ACEI for systolic HF. RCT 20 cardiology units in France (Experimental group (n=10) in each experimental unit, doctors were involved in drafting and implementing CPGs; those at control units were not.) HF pts <75 y old	carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge. charge of HF Hospitalization To determine whether the sequence of initiation of beta blockers or ACEI during hospitalization make a difference in outcomes. To evaluate the effect for evaluate the effect given to pts receiving ACEI for systolic HF. RCT CT 20 cardiology units in France (Experimental group (n=10) in each experimental unit, doctors were involved in drafting and implementing CPGs; those at control units were not.) Scharge of HF Hospitalization	carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge. 91 hospitals participating with prespecified 60-90 d follow-up from March 2003 to December 2004. To determine whether the sequence of initiation of beta blockers or ACEI during hospitalization make a difference in outcomes. RCT 101 Mild to moderate HF and LVEF <33%, who were not receiving ACEI, beta blocker, or ARB blocker, or	carcedidu use at discharge in pts hospitalized for HF and LVSD compared who are eligible for, but do not receive, beta blockers of ACEI during ACEI for systolic HF. Discharge carvedidu associated with a significant reduction in mortality and rehospitalization (CR: 0.71, p=0.0175) compared to no predischarge beta blocker. To determine who are eligible for, but do not receive, discharge. RCT 101 Mild to moderate HF and LVEF s33%, who are not receiving ACEI, beta blockers or ACEI during outcomes. N/A Bisoprolol-first treatment noninferior to enalapril-first treatment (HR: 1.17). Primary end point in 178 pts allocated to open-label blockers or ACEI during outcomes. To evaluate the effect of developing and implementing CPGs; hose at control units were not. RCT 101 Mild to moderate HF and LVEF s33%, who were not receiving ACEI, beta blockers or ACEI during outcomes. N/A Bisoprolol-first treatment (HR: 1.17). Primary end point in 178 pts allocated to bisoprolol-first treatment (HR: 1.17). Primary end point in 178 pts allocated to open-label bisoprolol (target dose 10 mg QD); n=5050 for 6 mo, followed by their combination for 6 to 24 mo. Significant reduced (HR: 0.95; 95% CI: 0.76-1.19). To evaluate the effect of developing and implementing CPGs on the quality of care given to pts neceving ACEI for systolic HF. RCT 20 cardiology units in France (Experimental group (n=01) ne ach were involved in drafting and implementing CPGs; those at no.t) Age >75 y Compliance with the CPG relating to ACEI dose on discharge higher in the experimental unit, doctors were involved in drafting and implementing CPGs; those at no.t)	carvedio use at model 91 hospitals participating within prespecified 60-30 d follow-up from March 2003 to December 2004. Discharge carvediol associated with a significant reduction in mortality (HR: 0.46, pc-0.006) and motality and the prespecified 60-30 d follow-up from March 2003 to December 2004. Discharge carvediol associated with a significant reduction in mortality (HR: 0.46, pc-0.006) and motality and the reduction on predischarge beta blocker. Discharge carvediol associated with a significant reduction in mortality (HR: 0.46, pc-0.006) and motality and the reduction on predischarge beta blocker. total constraints of beta blockers before discharge. RCT 101 Mild to moderate HF and LVEF 535%, who were not receiving ACEI, beta blocker, or ARB therapy randomized to open-label blocker, or ARB therapy randomized to open-label blocker, or ARB therapy randomized to open-label blocker to associated to bisoproloi-first treatment to 5 pt died, vs open-label blocker to associated to malapril-first treatment to 5 pt died, vs open-label bisoproloi (target dose 10 mg QD), n=5005 or enalapril first treatment to 5 pt died, vs open-label bisoproloi (target dose 10 mg QD), n=5005 or enalapril first treatment to 5 pt died, vs open-label bisoproloi (target dose 10 mg QD), n=5005 or enalapril first treatment to 5 pt died, vs open-label bisoproloi (target dose 10 mg QD), n=5005 or enalapril first treatment to 5 pt died, vs open-label bisoproloi (target dose 10 mg QD), n=5005 or enalapril first treatment to 2 pt disclared (HR: 0.95; 95% CI: 0.76-1.19). N/A To evaluate the effect of developing and implementing CPGs, there are not units were involved by their combination for fo to 24 mo. HF pt s<75 y did	carvedio use at discharge in plasming and in the specified AD 2003 to begin particular during in perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspecified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspectified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspectified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspectified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspectified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspectified AD 2003 to December 2004. USD compared to nortality (Hing UAG) perspectified AD 2003 to December 2004. USD compared to December 2004. USD co

Hamaguchi S, Kinugawa S, Tsuchihashi-Makaya M et al. Spironolactone use at Discharge was Associated With Improved Survival in Hospitalized Pts With Systolic HF. Am Heart J 2010;160:1156-62. <u>21146672</u> (360)	Whether the discharge use of spironolactone is associated with better mortality and rehospitalization among hospitalized s ystolic HF pts.	Prospective cohort	946	Hospitalized HF pts with reduced LVEF <40%.	N/A	Spironolactone prescribed at discharge in 435 pts (46%). Discharge use of spironolactone associated with reduction in death (HR: 0.612; p=0.020) and cardiac death (HR: 0.524; p=0.013).	p=0.02	HR: 0.612	N/A		
Ko DT, Juurlink DN, Mamdani MM et al. Appropriateness of Spironolactone Prescribing in HF Pts: a Population-Based Study. J Card Fail 2006;12:205- 10. <u>16624686 (</u> 361)	Appropriateness of spironolactone prescription at discharge.	Population based Cohort	9165	Hospitalized HF pts in Ontario, Canada, 1999-2001.	N/A	1502 pts prescribed spironolactone at discharge. 18% had hyperkalemia during hospitalization and 23% were discharged on concurrent potassium supplements. Although only 8% of pts with SCr >2.5 mg/dL, many with stage III (53.1%), stage IV (12.8%), or stage V (3.9%) chronic renal insufficiency.	N/A	N/A	N/A		
Digoxin During and at Discharg	e of HF Hospitalization	1									
Dhaliwal AS, Bredikis A, Habib G, Carabello BA, Ramasubbu K, Bozkurt B. Digoxin and Clinical Outcomes in Systolic HF Pts on Contemporary Background HF Therapy. Am J Cardiol 2008;102:1356-60. <u>18993155</u> (362)	To determine Col the effect of digoxin at discharge in pts hospitalized with HF.	hort	347	Hospitalized pts with HF.	Competing non-HF diagnoses	HF hospitalizations (HR: 1.08; 95% CI: 0.77-1.50; p=0.66), total mortality (HR: 1.03; 95% CI: 0.78-1.35, p=0.85), or the combined end point of HF hospitalization and total mortality (HR: 1.11, 95% CI: 0.81-1.53, p=0.52) not different in pts treated with digoxin compared with those not treated with digoxin.	p=0.66	HR: 1.08	Retrospective cohort		
Ahmed A, Allman RM, DeLong JF. Inappropriate use of Digoxin in Older Hospitalized HF Pts. J Gerontol A Biol Sci Med Sci 2002;57:M138-M143. <u>11818435 (</u> 363)	To determine Col the correlates of inappropriate dig oxin use in older HF pts.	hort	603	Older hospitalized HF pts with documented LVEF and EKG.	N/A	Digoxin use considered inappropriate if pts had preserved LVEF (≥40%) or if they had no AF. 376 pts (62%) discharged on digoxin, and 223 (37%) without indication for use. Of 132 pts without an indication and not already on digoxin, 38 (29%) initiated on it.	N/A	N/A	N/A		
Adherence to Performance Measurements or Guidelines for Evidence Based Medication Use During Hospitalization											
Krantz MJ, Ambardekar AV, Kaltenbach L, Hernandez AF, Heidenreich PA, Fonarow GC. Patterns and Predictors of	To assess noncontraindicated use patterns for ACEI/ARBs, beta	Registry (GTWG- HF)	9474	N/A	N/A	Of those treated before hospitalization, continuation rates: 88.5% for ACEI/ARBs, 91.6% for beta blockers, and 71.9% for aldosterone-antagonists.	N/A	N/A	N/A		
Evidence-Based Medication Continuation Among Hospitalized HF Pts (from Get With the Guidelines-HF). Am J Cardiol 2011 June 15;107(12):1818-23. <u>21482418 (</u> 364)	blockers, and aldosterone antagonists using the GWTG-HF registry.					Of pts untreated before admission, 87.4% started on ACEI/ARBs, 90.1% beta blocker and 25.2% on an aldosterone antagonist during hospitalization or at discharge. Admission therapy most strongly associated with discharge use (OR: 7.4, 6.0, and 20.9 for ACEI/ARBs, beta blockers, and aldosterone antagonists, respectively)					
---	---	---------------------------	--------------------------------	---	-----------------	---	--	-----	--------------		
Fonarow GC, Gheorghiade M, Abraham WT. Importance of In- hospital Initiation of Evidence- based Medical Therapies for HF-a Review. <i>Am J Cardiol</i> 2004 November 1;94(9):1155- 60. <u>15518610</u> (365)	Review of AHF therapies.	Review	N/A	N/A	N/A	Message: Adopting in-hospital initiation of HF therapies as the standard of care could improve treatment rates, decrease the risk of future hospitalizations, and prolong life.	N/A	N/A	Review paper		
Fonarow GC, Yancy CW, Heywood JT. Adherence to HF Quality-of-care Indicators in US Hospitals: Analysis of the ADHERE Registry. <i>Arch Intern</i> <i>Med</i> 2005 July 11;165(13):1469-77. <u>16009861</u> (366)	To determine the current rates of conformity with quality of care indicators or their variability across hospitals.	Registry (ADHERE)	81142 admissions	81142 admissions occurring between July 1, 2002, and December 31, 2003, at 223 academic and non-academic hospitals in the US participating in the ADHERE.	N/A	Median rates of conformity with HF-1, HF-2, HF-3, and HF-4 24.0%, 86.2%, 72.0%, and 43.2%, respectively.	N/A	N/A	Registry		
Fonarow GC, Abraham WT, Albert NM et al. Association Between Performance Measures and Clinical Outcomes for Pts Hospitalized With HF. JAMA 2007 January 3;297(1):61-70. <u>17200476 (</u> 367)	To examine the relationship between current (ACCF/AHA) performance measures for pts hospitalized with HF and relevant clinical outcomes.	Registry (OPTIMIZE-HF)	5791 pts at 91 US hospitals	OPTIMIZE-HF, a registry and performance improvement program.	Incomplete data	Mortality during follow-up 8.6% and mortality/rehospitalization 36.2%. None of the 5 ACCF/AHA HF performance measures was significantly associated with reduced early mortality risk. Only ACEI or ARB use at discharge was associated with 60 to 90 d postdischarge mortality or rehospitalization. Beta-blockade at the time of hospital discharge, (not a HF performance measure then) strongly associated with reduced mortality (HR: 0.48; 95% CI: 0.30-0.79; p=0.004).	p=0.004 for beta- blocker, p<0.05 for ACEI.		Registry		

Lappe JM, Muhlestein JB, Lappe DL et al. Improvements in 1 y Cardiovascular Clinical Outcomes Associated With a Hospital-based Discharge Medication Program. <i>Ann Intern</i> <i>Med</i> 2004 September 21;141(6):446-53. <u>15381518</u> (368)	To develop and implement a program ensuring appropriate prescription of aspirin, statins, beta blockers, ACEI, and warfarin at hospital discharge.	Prospective cohort	57465 enrolled from 10 largest hospitals in the Utah-based Intermountain Health Care system.	A nonrandomized / before-after study comparing pts hospitalized before (1996-1998) and after (1999-2002) implementation of a DMP.		Rate of prescription of each medication increased significantly to >90% (p<0.001). RR for death and readmission at 30 d decreased after DMP implementation; HRs for death and readmission: 0.81 (95% CI: 0.73-0.89) and 0.92 (95% CI: 0.87-0.99) (p<0.001 and p=0.017, respectively). At 1 y, risk for death still low (HR: 0.79; 95% CI: 0.75-0.84; p<0.001) while risk for readmission stabilized (HR: 0.94; 95% CI: 0.90-0.98; p=0.002).	95% CI: 0.75- 0.84; p<0.001	HR: 0.79	Observational and nonrandomized , authors could not control for potential confounders or determine the extent to which secular trends accounted for the observed improvements.
AHA Scientific Statement for Tr	eatment of Acute HF S	yndromes							
Weintraub NL, Collins SP, Pang PS et al. Acute HF Syndromes: ED Presentation, Treatment, and Disposition: Current Approaches and Future Aims: a Scientific Statement From the AHA. Circulation 2010 November 9;122(19):1975-96. 20937981 (369)	To characterize acute HF syndromes: from presentation, treatment, and disposition.	AHA scientific statement	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Recent Studies with Other Oral	Medications for Treatm	nent of Acute HF							
Gheorghiade M, Konstam MA, Burnett JC, Jr. et al. Short-term Clinical Effects of Tolvaptan, an Oral Vasopressin Antagonist, in Pts Hospitalized for HF: the EVEREST Clinical Status Trials. <i>JAMA</i> 2007 March 28;297(12):1332-43. <u>17384438</u> (153)	To evaluate short- term effects of tolvaptan when added to standard therapy in pts hospitalized with HF.	RCT (EVEREST)	2048 trial A, 2085 (trial B) 4133 tolvaptan (30 mg/d), or matching placebo, within 48 h of admission.	Age ≥18 y; current hospitalization for CHF with admission up to 48 h prior to randomization; chronic HF is defined as requiring treatment for a minimum of 30 d prior to hospitalization. Subject must have signs of extracellular volume expansion, defined as ≥2 of the following: a) JVD; b) pitting edema (>1+); or c) dyspnea. NYHA Class III or IV	Women who will not adhere to the reproductive precautions as outlined in the ICF. Positive urine pregnancy test. Inability to provide written informed consent. Cardiac surgery within 60 d of potential study enrollment, excluding PCI. Planned revascularization procedures, EP device implantation, cardiac mechanical support implantation, cardiac transplantation, or other cardiac surgery within 30 d following study enrollment. Subjects who are on cardiac mechanical support. Hx of biventricular pacer placement	Tolvaptan had no effect on long-term mortality or HF-related morbidity. Mortality for tolvaptan vs placebo not different (HR: 0.98; 95% CI: 0.87-1.11; p=0.68). Composite of CV death or hospitalization for HF not different (HR: 1.04; 95% CI: 0.95-1.14; p=0.55). Secondary end points CV mortality, CV death or hospitalization, and worsening HF not different between tolvaptan and placebo. Tolvaptan significantly improved secondary end points of Day 1 pt- assessed dyspnea, Day 1 body weight, and Day 7 edema. In pts with hyponatremia, serum sodium levels significantly increased.	95% CI: 0.87- 1.11; p=0.68	HR: 0.98	N/A

				-		
		at the time of	within the last 60 d. Co-			
		hospitalization.	morbid condition with an			
		LVEF ≤40% within 1	expected survival less than 6			
		у.	mo. Subjects with acute			
			STEMI at the time of			
			hospitalization. Hx of			
			sustained ventricular			
			tachycardia or ventricular			
			fibrillation within 30 d, unless			
			in the presence of an			
			automatic ICD. Hx of a			
			cerebrovascular accident			
			within the last 30 d.			
			Hemodynamically significant			
			uncorrected primary cardiac			
			valvular disease. Hypertrophic			
			cardiomyopathy (obstructive			
			or non-obstructive). CHF due			
			to uncorrected thyroid			
			disease, active myocarditis or			
			known amyloid			
			cardiomyopathy.			
			Subjects with progressive or			
			episodic neurological disease			
			such as multiple sclerosis or			
			Hx of multiple strokes. Hx of			
			primary significant liver			
			disease or acute hepatic			
			failure, as defined by the			
			investigator. Hx of poorly			
			controlled DM.			
			Morbid obesity, defined as			
			>159 kg (or 350 lbs) or BMI			
			>40. Supine systolic arterial			
			blood pressure <90 mmHg.			
			SCr >3.5 mg/dL or >309.4			
			mmol/L.			
			Serum potassium >5.5 mEq/L			
			or >5.5 mmol/L.			
			Hgb <9 g/dL or <90 g/L. Hx of			
			hypersensitivity and/or			
			idiosyncratic reaction to			
			benzazepine derivatives (such			

					as benazapril). Hx of drug or medication abuse within the past year, or current alcohol abuse. Inability to take oral medications. Participation in another clinical drug or device trial within the past 30 d. Previous participation in this or any other tolvaptan clinical trial.				
Konstam MA, Gheorghiade M, Burnett JC, Jr. et al. Effects of Oral Tolvaptan in Pts Hospitalized for Worsening HF: the EVEREST Outcome Trial. JAMA 2007 March 28;297(12):1319-31. <u>17384437 (</u> 154)	To investigate the effects of tolvaptan initiated in pts hospitalized with HF.	RCT (EVEREST- Outcome)	4133 (tolvaptan, 30 mg once per day (n=2072) or placebo (2062) within 48 h of admission.	Age \geq 18 y. Current hospitalization for chronic CHF with admission up to 48 h prior to randomization. Chronic HF is defined as requiring treatment for a minimum of 30 d prior to hospitalization. The subject must have signs of extracellular volume expansion, defined as \geq 2 of the following: a) JVD; b) pitting edema (>1+); or c) dyspnea. NYHA Class III or IV at the time of hospitalization. LVEF \leq 40% within 1 y.	Women who will not adhere to the reproductive precautions as outlined in the ICF. Positive urine pregnancy test. Inability to provide written informed consent. Cardiac surgery within 60 d of potential study enrollment, excluding PCI. Planned revascularization procedures, EP device implantation, cardiac mechanical support implantation, cardiac transplantation, or other cardiac surgery within 30 d following study enrollment. Subjects who are on cardiac mechanical support. Hx of biventricular pacer placement within the last 60 d. Comorbid condition with an expected survival less than 6 mo. Subjects with acute STEMI at the time of hospitalization. Hx of sustained ventricular fibrillation within 30 d, unless in the presence of an automatic ICD. Hx of a cerebrovascular accident within the last 30 d. Hemodynamically significant uncorrected primary cardiac	Tolvaptan had no effect on long-term mortality or HF-related morbidity. Mortality for tolvaptan versus placebo not different (HR: 0.98; 95% CI: 0.87-1.11; p=0.68). Composite of CV death or hospitalization for HF not different (HR: 1.04; 95% CI: 0.95-1.14; p=0.55). Secondary end points CV mortality, CV death or hospitalization, and worsening HF not different between tolvaptan and placebo. Tolvaptan significantly improved secondary end points of Day 1 pt- assessed dyspnea, Day 1 body weight, and Day 7 edema. In pts with hyponatremia, serum sodium levels significantly increased.	95% CI: 0.87- 1.11; p=0.68	HR: 0.98	N/A

		valvular disease. Hypertrophic		
		cardiomyopathy (obstructive		
		or non-obstructive). CHF due		
		to uncorrected thyroid		
		disease, active myocarditis or		
		known amyloid		
		cardiomyopathy.		
		Subjects with progressive or		
		episodic neurological disease		
		such as multiple sclerosis or		
		Hx of multiple strokes. Hx of		
		primary significant liver		
		disease or acute hepatic		
		failure, as defined by the		
		investigator. Hx of poorly		
		controlled DM.		
		Morbid obesity, defined as		
		>159 kg (or 350 lbs) or BMI		
		>40. Supine systolic arterial		
		blood pressure <90 mmHg.		
		SCr >3.5 mg/dL or >309.4		
		mmol/L.		
		Serum potassium >5.5 mEq/L		
		or >5.5 mmol/L.		
		Hgb <9 g/dL or <90 g/L. Hx of		
		hypersensitivity and/or		
		idiosyncratic reaction to		
		benzazepine derivatives (such		
		as benazapril). Hx of drug or		
		medication abuse within the		
		past y, or current alcohol		
		abuse. Inability to take oral		
		medications. Participation in		
		another clinical drug or device		
		trial within the past 30 d.		
		Previous participation in this		
		or any other tolvaptan clinical		
		trial.		

ACCF/AHA indicates American College of Cardiology Foundation/American Heart Association; ACEI, angiotensin-converting enzyme inhibitor; ADHERE, Acute Decompensated HF National Registry; AF, atrial fibrillation; AHF, acute heart failure; ARB, angiotensin-receptor blocker; BMI, body mass index; CHF, congestive heart failure; CI, confidence interval; CIBIS, Cardiac Insufficiency Bisoprolol Study; COMET, Carvedilol or Metoprolol European Trial; CPG, clinical practice guidelines; CV, cardiovascular; DM, diabetes mellitus; DMP, discharge medication program; ED, emergency department; EKG, electrocardiogram; EP, electrophysiology; GWTG-HF, Get With the Guidelines-HF; HF, heart failure; Hx, history; ICD, implantable cardioverter-defibrillator; JVD, jugular venous distention; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; NS, not significant; NYHA, New York Heart Association; OPTIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Pts with HF; PCI, percutaneous coronary intervention; Pts, patients; RCT, randomized controlled trial; SAE, serious adverse event; SCr, serum creatinine, STEMI, ST segment elevation myocardial infarction; and US, United States.

Data Supplement 41. Atrial Fibrillation (Section 9.1) Patient Population Findings/ Comments Aim of Study Study Endpoints Statistical Analysis (Results) **Study Limitations** Study Study Type Size Name, Author, Year Primary Endpoint Inclusion Criteria Exclusion Secondarv Criteria Endpoint LVEF ≤35%. Death from all CV causes: 27% in Death from any The use of rhythm-control did not AF CHF Rhythm control Multi-1.376 N/A Death from CV Results cannot be Roy, 2008 reduces mortality center history of CHF. cause, worsening of rhytm-control group vs. 25% in rategeneralized to pts with HF reduce the rate of death from CV causes 19102036 as compared to RCT and history of AF CHF. or stroke. control group and preserved LV function causes compared with rate-(370) HR: 1.0 6; p=0.59; 95% CI: 0.86-1.30 (in whom AF is common). control. No significant rate control differences in secondary outcomes either. AFFIRM. 4,060 ≥65 y with history Difference in mortality not statistically Rhythm-control strategy did not Multi-N/A Rhythm control Overall mortality Composite death, Findings cannot be significant. HR: 1.15 95%CI: 0.99of AF and other 2002 reduces mortality center dsabling stroke. generalized to pts with improve morality when 12466506 RCT risk factors for more severe AF or to as compared to diabling anoxic 1.34; ; p=0.08 compared to rate-control. (371) younger pts without risk rate control stroke or death encephalopathy, major bleeding or factors for stroke cardiac arrest Dabigatran 110 mg twice d compared Both doses of Dabigatran were RE-LY. Compare 2 doses Multi-18.113 Pts with AF and at N/A N/A Major bleeding N/A Eikelboom, (110 mg and 150 with warfain: 2.87% vs. 3.57 % associated with lower risks of center least 1 additional mg) of dabigatran RCT (p=0.0002) 2011 risk factor for major bleeding than warfarin. 21576658 2 x d vs. warfarin Dabigatran 150 mg twice d vs stroke Found an interaction between (372) warfarin: 3.31% vs. 3.57% (p=0.32) for stroke treatment and age for major prevention in pts Dabigatran 150 mg twice d vs. bleeding. Both doses of with AF Dabigatran 110 mg: 3.31% vs. Dabigatran associated with lower 2.87% (p=0.04) risk of extracranial bleeding in pts <75 y, though associated with similar or higher risks in pts ≥75 y. Risk of intracranial bleeding was lower with either dose of Dabigatran, regardless of age. The 150 mg dose of Dabigatran was Both doses of Dabigatran were RE-LY. Compare 2 doses Mutli-18.113 Pts with previous N/A Stroke or systemic N/A N/A Connolly, SJ, superior to warfarin in reducing stroke noninferior to warafin with (110 mg and 150 stroke or TIA. center embolism mg) of dabigatran RCT LVEF <40% and systemic embolism (RR:0.66; 2009 respect to the primary outcome NYHA class II or 95% CI: 0.53-0.82; p<0.0001) but the 19717844 2x d vs. warfarin (193) in pts with AF at higher 110 mg dose was not when increased risk of compared to warafin (RR: 0.91; 95%) CI: 0.74-1.11; p=0.34) stroke

ROCKET AF, Fox KAA, 2011 <u>21873708</u> (373)	Compare rivaroxaban with warfarin in prevention of stroke or systemic embolism in pts with AF	Double blind RCT	14,264; 2,950 pts with moderate renal impairment	Pts with non- valvular AF and moderate renal impairment (CrCl 30-49 mL/min)	N/A	Stroke or systemic embolism	N/A	Primary outcome occurred in 2.32 per 100 pt-y in rivaroxaban vs. 2.77 per 100 pt-y in warafin group. Fatal bleeding was 0.28% in rivaroxaban vs. 0.74% per 100 pt-y in warafin (ITT analysis HR: 0.86; 95% CI: 0.63-1.17; p=0.0047)	Analysis was not powered to detect differences between drugs in pts with renal insuficiency	While not able to show a difference between drugs, rivaroxaban was associated with reduction in fatal bleeding in pts with renal insufieniency.
ROCKET AF, Patel MR, 2011 <u>21830957</u> (196)	Compare rivaroxaban with warfarin in prevention of stroke or systemic embolism in pts with AF	Double blind RCT	14,264	Non-valvular AF	N/A	Stroke or systemic embolism	N/A	Primary outcome occurred in less often in rivaroxaban group than warfarin group (2.1 % vs. 2.4% per y) ITT analysis noninferiority: HR: 0.88; 95% CI: 0.74-1.03; p<0.0001	No between group differences in the ITT analysis.	Showed noninferiority of rivaroxaban.

AF indicates atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; CHF, congestive heart failure; CrCI, creatinine clearance; CV, cardiovascular; HR, hazard ratio; ITT, intent-to-treat; LV, left ventricular; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; Pts, patients; RCT, randomized control trial; RE-LY, randomized evaluation of long-term anticoagulant therapy trial; ROCKET-AF, Rivaroxaban Once Daily Oral Direct Factor Xa Inhibitor Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation; RR, relative risk; and TIA, transient ischemic attack;

Data Supplement 42. HF Disease Management (Section 11.2)

Study Name,	Aim of study	Study Type	Study Size	Patient Population		Endpoints		Statistical Analysis (Results)	Study Limitations	Findings/ Comments
Author, Year			-		•					
				Inclusion Criteria	Exclusion Criteria	Primary	Secondary			
						Endpoint	Endpoint			
What Works In Chronic Care Management: The Case Of HF <u>19124869</u> (374)	The effect of delivery methods in the management of HF care on hospital readmissions	Meta analysis of RCTs	2,028	Not Reported	Not Reported	All-cause hospital readmissions and readmission d	N/A	Pts enrolled in chronic care management programs using a multidisciplinary team in addition to in-person communication had a 2.9% reduction in readmissions/ mo and a 6.4% reduction in readmission d/mo compared to routine care (p < 0.001).	Possible study selection bias; were not able to evaluate cost savings; retrospective analysis.	A team-based approach in chronic care management programs for HF pts meets AHA's principles for high-quality disease management programs and the Disease Management Association of America's key components of disease management programs.

CM in a heterogeneous CHF population: a RCT <u>12695272</u> (375)	Test the effect of CHF case management with the following 4 components: 1. early discharge planning, 2. pt and family CHF education, 3. 12 wk of telephone f/u, and, 4. promotion of optimal CHF medications	RCT	287	Primary or secondary diagnosis of CHF, LVD <40%, or radiologic evidence of pulmonary edema for which they underwent diuresis; had to be at risk for early readmission	Discharge to a long- term care facility, planned cardiac surgery, cognitive impairment, anticipated survival of <3 mo, and long- term hemodialysis	90-d readmission rate	Adherence to treatment plan and pt satisfaction	There was no difference between the 2 groups in 90-d re-admission rates (both were 37%, p>0.99). The intervention group showed greater adherence to most aspects of the treatment plan (p<0.01) and pts in this group reported greater pt satisfaction (p<0.01). Subgroup of pts who live in area and received care from local cardiologists decreased CHF readmission rate (2%vs. 14%; p=0.03).	Study was not blinded, adherence was assessed via pt self-report; and no consistent method for NYHA classification.	The intervention did not increase costs and study showed that strong working relationships between the CM and cardiologists decreased CHF hospital readmission rates.
CM for pts with chronic systolic HF in primary care: the HICMan exploratory RCT. <u>20478035</u> (376)	To compare CM vs. usual care on pt outcomes.	RCT	197	Adults with LVEF ≤45%	Not reported	HRQoL, HF self- care, and pt- reported quality of care.		Nonsignificant between group differences for the KCCQ overall summary scores favored CM: 1.7 (95%CI: -3.0-6.4; p=0.477). Heart failure self-care behavior scores were significant group differences favoring CM: -3.6 (95%CI: -5.71.6; Cohen's d 0.55; p=0.001) Significant between group differences quality of chronic illness care (0.5; 95% CI : 0.3-0.7; p=0.000) and behavior counseling (0.5; 95%CI : 0.3-0.8; p=0.000), with moderate effect sizes (Cohen's d 0.7 for each summary score).	Small, unblended sample of patients from a non- representative sample of physicians.	The intervention failed to improve overall QoL, though showed significant improvements in pt- reported quality of care and chronic HF self-care.
Impact of a specialized outpatient HF follow-up program on hospitalization frequency and functional status of pts with AHF. 17695729	To evaluate the impact of a specialized outpatient HF follow-up program	Retrospective	147	Not reported	Not reported	Frequency and duration of hospitalization for HF and functional status		Significant improvement in NYHA class during the mean follow-up period: 55% of the pts were in class III, 37% in class II, 5% in class I and 3% in class IV (p<0.0001). Hospitalizations for acute decompensation of HF decreased: 87 at baseline vs. 25 (p<0.0001)	Small retrospective study	No significant differences were found in the proportion of pts on therapeutic drugs or in mean duration of hospitalization

(377)									
Outpatient medical and nurse management program in pts with chronic HF in a large territorial area in Piedmont, 4	To evaluate an outpatient management program for pts with chronic HF	Prospective trial	115	Adults with chronic HF in the Piedmont region of Italy.	Hospitalization and ED admissions in the 12 mo before the 1 st evaluation and every y after referral	MLWHF, NYHA functional class, pharmacological therapies at the referral time and at the end of follow-up.	EF improved from 31 +/- 10 to 36 +/- 12%. ED admissions and hospitalizations decreased (p < 0.001). NYHA classes I-II improved from 65.5 to 87.7% and NYHA classes III-IV were reduced from 34.5 to 12.3%. MLWHF score decreased from 25 to 21.9. Pts treated with ACEI + ARB increased	Small trial, not generalizable to populations outside of Italy.	Showed a decrease in the number of hospitalizations and improvement in NYHA functional class and adherence to medical therapy. These results kept constant over time in the subsequent 4 y.
y of follow-up. <u>16444925</u> (270)							from 91 to 96%, beta blockers from 35.2 to 69%, potassium sparing		
(378)							drugs increased from 54 to 64%.		

ACEI indicates angiotensin-converting-enzyme inhibitor; AHF, acute heart failure; ARB, angiotensin receptor blockers; CHF, congestive heart failure; CM, case management; ED, emergency department; EF, ejection fraction; HF, heart failure; HRQoL, health related quality of life; KCCQ, LVD, left ventricular dysfunction; MLHF, Minnesota Living with Heart Failure; NYHA, pts, patients; and QoL, quality of life.

Data Supplement 43. Telemonitoring (Section 11.2)

Study Name, Author, Year	Aim of study	Study	Study	Patien	t Population	Endpoints		Statistical Analysis (Results)	Study Limitations	Findings/ Comments
Aution, Teal		турс	5120							
				Inclusion	Exclusion Criteria	Primary	Secondary			
				Criteria		Endpoint	Endpoint			
Telemonitoring or structured telephone support programs for pts with chronic HF: systematic review and meta-analysis. <u>17426062</u> (379)	To determine whether remote monitoring (structured telephone support or telemonitoring) without regular clinic or home visits improves outcomes for pts with chronic HF	Meta analysis	4,264	Published RCTs comparing remote monitoring programs with usual care in patients with chronic HF managed within the community.		All-cause mortality, all-cause rate of admission to hospital, and rate of admission to hospital as a result of chronic HF		20% reduction in all-cause mortality (95% Cl: 8- 31%) with telemonitoring. No change in all-cause hospital admission rate. Hospital admissions due to chronic HF saw a reduction of 21% (95% Cl: 11 -31%) with remote monitoring programmes	Relatively small number of studies and pts; few trials had follow-up beyond 6 mo.	Remote monitoring programs for pts with chronic HF reduced admissions to hospital and all-cause mortality by nearly 1/5.

Structured telephone support or telemonitoring programs for pts with chronic HF <u>20687083</u> (380)	To examine the effect of telemonitoring and structured telephone support on HF outcomes.	Meta analysis	25 studies, 16 structured telephone support (n = 5613) and 11 of telemonitori ng (n = 2710)	RCTs, adults ≥18 y, diagnosed with chronic HF.	Trials of general cardiac disorders rather than chronic HF were excluded.	All-cause mortality	All-cause readmissions to hospital and chronic HF- related admission to hospital	$\label{eq:alpha} \begin{array}{ c c c c c } \hline All-cause mortality: \\ \hline Telemonitoring RR: 0.66; 95% CI: \\ 0.54-0.81, p< 0.0001 \\ \hline Structured telephone support RR: \\ 0.88; 95% CI: 0.76-1.01; p=0.08 \\ \hline All-cause hospitalization: \\ \hline Telemonitoring RR:0.91; 95% CI: \\ 0.84-0.99; p=0.02 \\ \hline Structured telephone support RR: \\ 0.92; 95% CI: 0.85-0.99; p=0.02 \\ \hline Chronic HF-related hospitalizations: \\ \hline Telemonitoring RR: 0.79; 95% CI: \\ 0.67-0.94; p=0.008. \\ \hline Structured telephone support RR: \\ 0.77; 95% CI: 0.68-0.87; p<0.0001 \\ \hline \end{array}$	Unable to stratify by age, sex, or NYHA class. Unable to adjust for the differing lengths of follow-up.	Telemonitoring and structured telephone support interventions for assisting with management of pts with chronic HF are beneficial and may play a significant role in the care of 'standard' management of chronic HF.
Effect of a standardized nurse case- management telephone intervention on resource use in patients with chronic HF. 11911726 (381)	To assess the effectiveness of a standardized telephonic case- management intervention in pts with chronic HF.	RCT	358; 130 (interventio n); 228 (usual care)	N/A	N/A	HF hospitalization rates	All-cause hospitalization rates; HF readmission rate; HF hospital d	HF hospitalization rate was 45.7% lower in the intervention group at 3 mo (p=0.03) and 47.8% lower at 6 mo (p=0.01). HF hospital d (p=0.03) and multiple readmissions (p=0.03) were significantly lower in the intervention group at 6 mo – though not significant after adjustment for other covariates.	Selection bias due to randomization of physicians, rather than pts. Impossible to completely blind physicians to treatment.	Telephonic case management can reduce HF hospitalization resulting in significant cost savings.
RCT of telephone case management in Hispanics of Mexican origin with HF. <u>16624687</u> (382)	Tested the effectiveness of telephone case management in decreasing hospitalizations and improving HRQL and depression	RCT	134; 69 (interventio n); 65 (usual care)	Hospitalized Hispanics with chronic HF	N/A	HF re- hospitalization	All-cause hospitalization, d in the hospital (HF and all- cause), multiple readmissions, acute care costs, all-cause mortality, HRQL, depression	No significant group differences were found in HF hospitalizations, HF readmission rate, d in the hospital, HF cost of care, all-cause acute care use or cost, mortality, HRQL, or depression.	Small sample size. Possible confounders included very ill population, poorly educated, economically poor, and unacculturated into US society.	None
Telemonitoring in pts with HF. <u>21080835 (</u> 383)	Test the effectiveness of telemonitoring vs. usual care.	RCT	1653; 826 (interventio n); 827 (usual care)	Pts were enrolled from 2006-2009 at 33 cardiology practices across	Residence in a long-term nursing home; inability to participate in the protocol for any reason, including a low expected	All-cause readmission or all- cause mortality (within 180 d post enrollment)	HF hospitalization, d in the hospital, and number of	All-cause readmission or mortality: telemonitoring vs. usual care HR: 1.04; 95% CI: 0.91-1.19. No significant differences were seen between the 2 groups with respect to	Automated system with low adherence rate.	Telemonitoring did not improve outcomes among pts recently hospitalized for HF.

the US. Pts prot hospitalized the for HF in the star previous 30 d cog and hospitalized	obability of survival for e next 6 mo; inability to and on a scale; severe gnitive impairment; d a planned ispitalization for a	hospitalizations tl	the secondary endpoints	
proc	ocedure			

HF indicates heart failure; HR, hazard ratio; HRQL, health related quality of life; NYHA, New York Heart Association; pts, patients; RCT, randomized control trial; RR, relative risk; and US, United States.

Data Supplement 44. Quality Metrics and Performance Measures (Section 12)

Study Name, Author, Year	Aim of study	Study Type	Study Size	Patient Population		Endpoints		Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Temporal trends in clinical characteristics, treatments, and outcomes for HF hospitalizations, 2002-2004: findings from ADHERE. <u>17540205</u> (384)	To assess temporal trends in clinical characteristics, treatments, quality indicators, and outcomes for HF hospitalizations.	Prospective	159,168	N/A	N/A	N/A	N/A	Inhospital treatment changed significantly over time with inotrope use decreasing from 14.7% to 7.9% (p<0.0001). Discharge instructions increased 133%; smoking counseling, 132%; LV function measurement, 8%; and beta blocker use, 29% (all p<0.0001). Clinical outcomes improved over time, including need for mechanical ventilation, RR: 0.64, p < .0001); length of stay (mean), 6.3 to 5.5 d; and mortality, RR: 0.71, p<0.0001).	N/A	N/A
Improving evidence- based care for HF in outpatient cardiology practices: primary results of the Registry to Improve the Use of Evidence- Based HF Therapies in the Outpatient Setting (IMPROVE HF). <u>20660805 (</u> 385)	To evaluate the effectiveness of a practice-specific performance improvement intervention on the use of guideline- recommended therapies for pts with diagnosed HF and reduced LVEF or prior MI and reduced LVEF in outpatient cardiology practices	Prospective	34,810	HF or prior MI with LVEF ≤35%	Those with noncardiovascula r medical condition associated with an estimated survival of <1 y and those who had undergone cardiac transplantation	7 quality measures: use of 1) ACEI or ARB, 2) Beta blocker, 3) aldosterone antagonist, 4) anticoagulant therapy for AF or flutter, 5) CRT with a defibrillator/CRT with a pacemaker, 6) ICD (ICD or CRT with a defibrillator), and 7) HF education for eligible pts.	N/A	Significant improvement was demonstrated in 5 of the 7 quality measures at the practice level at 24 mo after implementation of the performance improvement intervention, use of aldosterone antagonists, CRT, ICD, beta blocker, and HF education (p<0.001); Use of anticoagulation in eligible patients with AF did not improve over time. Use of ACEI/ARB increased (+6.8%), but this was not statistically significant (p=0.063)	Data collected by chart review, which may be incomplete; selection bias as eligible pts not included in analysis may differ by contraindication from those who were; analysis not adjusted for differing lengths of follow up.	Study demonstrates the positive impact of applying performance improvement techniques of guideline- driven care and improvement tools, in real- world cardiology practices.

ACEI indicates angiotensin-converting-enzyme inhibitor; ADHERE, Acute Decompensated Heart Failure National Registry; AF, atrial fibrillation; ARB, angiotensin receptor blockers; CRT, cardiac resynchronization therapy; HF, heart failure; ICD, implantable cardioverter-defibrillator; LV, left ventricular; MI, myocardial infarction; pt, patient; and RR, relative risk.

References

- 1. Masoudi FA, Havranek EP, Smith G, et al. Gender, age, and heart failure with preserved left ventricular systolic function. J Am Coll Cardiol. 2003;41:217-23.
- 2. Aaronson KD, Schwartz JS, Chen TM, et al. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2660-7.
- 3. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260-9.
- 4. Lee DS, Gona P, Vasan RS, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;119:3070-7.
- 5. Kane GC, Karon BL, Mahoney DW, et al. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA. 2011;306:856-63.
- 6. Madsen BK, Hansen JF, Stokholm KH, et al. Chronic congestive heart failure. Description and survival of 190 consecutive patients with a diagnosis of chronic congestive heart failure based on clinical signs and symptoms. Eur Heart J. 1994;15:303-10.
- 7. Holland R, Rechel B, Stepien K, et al. Patients' self-assessed functional status in heart failure by New York Heart Association class: a prognostic predictor of hospitalizations, quality of life and death. J Card Fail. 2010;16:150-6.
- 8. Ammar KA, Jacobsen SJ, Mahoney DW, et al. Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation. 2007;115:1563-70.
- 9. Goldman L, Hashimoto B, Cook EF, et al. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation. 1981;64:1227-34.
- 10. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424-33.
- 11. Lee DS, Austin PC, Rouleau JL, et al. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581-7.
- 12. O'Connor CM, Abraham WT, Albert NM, et al. Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2008;156:662-73.
- 13. Pocock SJ, Wang D, Pfeffer MA, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27:65-75.
- 14. Fonarow GC, Adams KF, Jr., Abraham WT, et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572-80.
- 15. Peterson PN, Rumsfeld JS, Liang L, et al. A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes. 2010;3:25-32.
- 16. Abraham WT, Fonarow GC, Albert NM, et al. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J Am Coll Cardiol. 2008;52:347-56.
- 17. Wedel H, McMurray JJ, Lindberg M, et al. Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide. Eur J Heart Fail. 2009;11:281-91.
- 18. Auble TE, Hsieh M, McCausland JB, et al. Comparison of four clinical prediction rules for estimating risk in heart failure. Ann Emerg Med. 2007;50:127-35, 135.
- 19. Moser DK, Yamokoski L, Sun JL, et al. Improvement in health-related quality of life after hospitalization predicts event-free survival in patients with advanced heart failure. J Card Fail. 2009;15:763-9.
- 20. Lesman-Leegte I, Jaarsma T, Coyne JC, et al. Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls. J Card Fail. 2009;15:17-23.
- 21. Riegel B, Moser DK, Rayens MK, et al. Ethnic differences in quality of life in persons with heart failure. J Card Fail. 2008;14:41-7.
- 22. Calvert MJ, Freemantle N, Cleland JG. The impact of chronic heart failure on health-related quality of life data acquired in the baseline phase of the CARE-HF study. Eur J Heart Fail. 2005;7:243-51.

- 23. Lewis EF, Lamas GA, O'Meara E, et al. Characterization of health-related quality of life in heart failure patients with preserved versus low ejection fraction in CHARM. Eur J Heart Fail. 2007;9:83-91.
- 24. Dobre D, de Jongste MJ, Haaijer-Ruskamp FM, et al. The enigma of quality of life in patients with heart failure. Int J Cardiol. 2008;125:407-9.
- 25. Harrison MB, Browne GB, Roberts J, et al. Quality of life of individuals with heart failure: a randomized trial of the effectiveness of two models of hospital-to-home transition. Med Care. 2002;40:271-82.
- 26. Arena R, Myers J, Abella J, et al. Defining the optimal prognostic window for cardiopulmonary exercise testing in patients with heart failure. Circ Heart Fail. 2010;3:405-11.
- 27. Mancini DM, Eisen H, Kussmaul W, et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83:778-86.
- 28. O'Neill JO, Young JB, Pothier CE, et al. Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation. 2005;111:2313-8.
- 29. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884-8.
- 30. Chakko S, Woska D, Martinez H, et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am J Med. 1991;90:353-9.
- 31. Drazner MH, Hellkamp AS, Leier CV, et al. Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ Heart Fail. 2008;1:170-7.
- 32. Butman SM, Ewy GA, Standen JR, et al. Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension. J Am Coll Cardiol. 1993;22:968-74.
- 33. Stein JH, Neumann A, Marcus RH. Comparison of estimates of right atrial pressure by physical examination and echocardiography in patients with congestive heart failure and reasons for discrepancies. Am J Cardiol. 1997;80:1615-8.
- 34. Badgett RG, Lucey CR, Mulrow CD. Can the clinical examination diagnose left-sided heart failure in adults? JAMA. 1997;277:1712-9.
- 35. Drazner MH, Rame JE, Stevenson LW, et al. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345:574-81.
- 36. Drazner MH, Rame JE, Dries DL. Third heart sound and elevated jugular venous pressure as markers of the subsequent development of heart failure in patients with asymptomatic left ventricular dysfunction. Am J Med. 2003;114:431-7.
- 37. Meyer P, Ekundayo OJ, Adamopoulos C, et al. A propensity-matched study of elevated jugular venous pressure and outcomes in chronic heart failure. Am J Cardiol. 2009;103:839-44.
- 38. Schmidt DE, Shah PK. Accurate detection of elevated left ventricular filling pressure by a simplified bedside application of the Valsalva maneuver. Am J Cardiol. 1993;71:462-5.
- 39. Brunner-La Rocca HP, Weilenmann D, Rickli H, et al. Is blood pressure response to the Valsalva maneuver related to neurohormones, exercise capacity, and clinical findings in heart failure? Chest. 1999;116:861-7.
- 40. Givertz MM, Slawsky MT, Moraes DL, et al. Noninvasive determination of pulmonary artery wedge pressure in patients with chronic heart failure. Am J Cardiol. 2001;87:1213-5.
- 41. Sharma GV, Woods PA, Lambrew CT, et al. Evaluation of a noninvasive system for determining left ventricular filling pressure. Arch Intern Med. 2002;162:2084-8.
- 42. Felker GM, Cuculich PS, Gheorghiade M. The Valsalva maneuver: a bedside "biomarker" for heart failure. Am J Med. 2006;119:117-22.
- 43. Lucas C, Johnson W, Hamilton MA, et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J. 2000;140:840-7.
- 44. Nohria A, Tsang SW, Fang JC, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797-804.
- 45. Levy WC, Mozaffarian D, Linker DT, et al. Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant. 2009;28:231-6.
- 46. Gorodeski EZ, Chu EC, Chow CH, et al. Application of the Seattle Heart Failure Model in ambulatory patients presented to an advanced heart failure therapeutics committee. Circ Heart Fail. 2010;3:706-14.
- 47. Rohde LE, Goldraich L, Polanczyk CA, et al. A simple clinically based predictive rule for heart failure in-hospital mortality. J Card Fail. 2006;12:587-93.
- 48. Gheorghiade M, Follath F, Ponikowski P, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12:423-33.
- 49. Syed IS, Glockner JF, Feng D, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155-64.
- 50. Rizzello V, Poldermans D, Biagini E, et al. Prognosis of patients with ischaemic cardiomyopathy after coronary revascularisation: relation to viability and improvement in left ventricular ejection fraction. Heart. 2009;95:1273-7.
- 51. Allman KC, Shaw LJ, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a metaanalysis. J Am Coll Cardiol. 2002;39:1151-8.

- 52. Beanlands RS, Ruddy TD, deKemp RA, et al. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol. 2002;40:1735-43.
- 53. Pagley PR, Beller GA, Watson DD, et al. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997;96:793-800.
- 54. Senior R, Kaul S, Lahiri A. Myocardial viability on echocardiography predicts long-term survival after revascularization in patients with ischemic congestive heart failure. J Am Coll Cardiol. 1999;33:1848-54.
- 55. Kwon DH, Halley CM, Carrigan TP, et al. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. JACC Cardiovasc Imaging. 2009;2:34-44.
- 56. Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology. 2011;261:358-74.
- 57. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116:2216-33.
- 58. Kasper EK, Agema WR, Hutchins GM, et al. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J Am Coll Cardiol. 1994;23:586-90.
- 59. Fowles RE, Mason JW. Endomyocardial biopsy. Ann Intern Med. 1982;97:885-94.
- 60. Deckers JW, Hare JM, Baughman KL. Complications of transvenous right ventricular endomyocardial biopsy in adult patients with cardiomyopathy: a seven-year survey of 546 consecutive diagnostic procedures in a tertiary referral center. J Am Coll Cardiol. 1992;19:43-7.
- 61. Ardehali H, Qasim A, Cappola T, et al. Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J. 2004;147:919-23.
- 62. Holzmann M, Nicko A, Kuhl U, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation. 2008;118:1722-8.
- 63. Elliott P, Arbustini E. The role of endomyocardial biopsy in the management of cardiovascular disease: a commentary on joint AHA/ACC/ESC guidelines. Heart. 2009;95:759-60.
- 64. Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068-72.
- 65. Vasan RS, Beiser A, Seshadri S, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study. JAMA. 2002;287:1003-10.
- 66. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557-62.
- 67. Wilhelmsen L, Rosengren A, Eriksson H, et al. Heart failure in the general population of men--morbidity, risk factors and prognosis. J Intern Med. 2001;249:253-61.
- 68. Kostis JB, Davis BR, Cutler J, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA. 1997;278:212-6.
- 69. Staessen JA, Wang JG, Thijs L. Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens. 2003;21:1055-76.
- 70. Sciarretta S, Palano F, Tocci G, et al. Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Arch Intern Med. 2011;171:384-94.
- 71. Lind M, Bounias I, Olsson M, et al. Glycaemic control and incidence of heart failure in 20,985 patients with type 1 diabetes: an observational study. Lancet. 2011;378:140-6.
- 72. Pfister R, Cairns R, Erdmann E, et al. A clinical risk score for heart failure in patients with type 2 diabetes and macrovascular disease: An analysis of the PROactive study. Int J Cardiol. 2011;
- 73. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305-13.
- 74. Kenchaiah S, Sesso HD, Gaziano JM. Body mass index and vigorous physical activity and the risk of heart failure among men. Circulation. 2009;119:44-52.
- 75. Verdecchia P, Sleight P, Mancia G, et al. Effects of telmisartan, ramipril, and their combination on left ventricular hypertrophy in individuals at high vascular risk in the Ongoing Telmisartan Alone and in Combination With Ramipril Global End Point Trial and the Telmisartan Randomized Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease. Circulation. 2009;120:1380-9.
- 76. Braunwald E, Domanski MJ, Fowler SE, et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058-68.
- 77. Mills EJ, Rachlis B, Wu P, et al. Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. J Am Coll Cardiol. 2008;52:1769-81.
- 78. Taylor F, Ward K, Moore TH, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2011;CD004816.
- 79. Abramson JL, Williams SA, Krumholz HM, et al. Moderate alcohol consumption and risk of heart failure among older persons. JAMA. 2001;285:1971-7.
- 80. Walsh CR, Larson MG, Evans JC, et al. Alcohol consumption and risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2002;136:181-91.

- 81. Choueiri TK, Mayer EL, Je Y, et al. Congestive heart failure risk in patients with breast cancer treated with bevacizumab. J Clin Oncol. 2011;29:632-8.
- 82. Du XL, Xia R, Burau K, et al. Cardiac risk associated with the receipt of anthracycline and trastuzumab in a large nationwide cohort of older women with breast cancer, 1998-2005. Med Oncol. 2011;28 Suppl 1:S80-S90.
- 83. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375-80.
- 84. McKie PM, Cataliotti A, Lahr BD, et al. The prognostic value of N-terminal pro-B-type natriuretic peptide for death and cardiovascular events in healthy normal and stage A/B heart failure subjects. J Am Coll Cardiol. 2010;55:2140-7.
- 85. Velagaleti RS, Gona P, Larson MG, et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010;122:1700-6.
- 86. Blecker S, Matsushita K, Kottgen A, et al. High-normal albuminuria and risk of heart failure in the community. Am J Kidney Dis. 2011;58:47-55.
- 87. deFilippi CR, de Lemos JA, Christenson RH, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494-502.
- 88. Heidenreich PA, Gubens MA, Fonarow GC, et al. Cost-effectiveness of screening with B-type natriuretic peptide to identify patients with reduced left ventricular ejection fraction. J Am Coll Cardiol. 2004;43:1019-26.
- 89. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327:669-77.
- 90. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigattors. N Engl J Med. 1992;327:685-91.
- 91. Jong P, Yusuf S, Rousseau MF, et al. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet. 2003;361:1843-8.
- 92. Scirica BM, Morrow DA, Cannon CP, et al. Intensive statin therapy and the risk of hospitalization for heart failure after an acute coronary syndrome in the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2006;47:2326-31.
- 93. de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307-16.
- 94. Bocchi EA, Guimaraes G, Mocelin A, et al. Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation. 2002;106:1097-103.
- 95. VanSuch M, Naessens JM, Stroebel RJ, et al. Effect of discharge instructions on readmission of hospitalised patients with heart failure: do all of the Joint Commission on Accreditation of Healthcare Organizations heart failure core measures reflect better care? Qual Saf Health Care. 2006;15:414-7.
- 96. Koelling TM, Johnson ML, Cody RJ, et al. Discharge education improves clinical outcomes in patients with chronic heart failure. Circulation. 2005;111:179-85.
- 97. Linne AB, Liedholm H. Effects of an interactive CD-program on 6 months readmission rate in patients with heart failure a randomised, controlled trial [NCT00311194]. BMC Cardiovasc Disord. 2006;6:30.
- 98. Stromberg A, Dahlstrom U, Fridlund B. Computer-based education for patients with chronic heart failure. A randomised, controlled, multicentre trial of the effects on knowledge, compliance and quality of life. Patient Educ Couns. 2006;64:128-35.
- 99. Ferrante D, Varini S, Macchia A, et al. Long-term results after a telephone intervention in chronic heart failure: DIAL (Randomized Trial of Phone Intervention in Chronic Heart Failure) follow-up. J Am Coll Cardiol. 2010;56:372-8.
- 100. Boren SA, Wakefield BJ, Gunlock TL, et al. Heart failure self-management education: a systematic review of the evidence. Int J Evid Based Healthc. 2009;7:159-68.
- 101. Cruz F, Issa VS, Ayub-Ferreira SM, et al. Effect of a sequential education and monitoring programme on quality-of-life components in heart failure. Eur J Heart Fail. 2010;12:1009-15.
- 102. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121:e46-e215.
- 103. Luttik ML, Jaarsma T, Moser D, et al. The importance and impact of social support on outcomes in patients with heart failure: an overview of the literature. J Cardiovasc Nurs. 2005;20:162-9.
- 104. Struthers AD, Anderson G, Donnan PT, et al. Social deprivation increases cardiac hospitalisations in chronic heart failure independent of disease severity and diuretic non-adherence. Heart. 2000;83:12-6.
- 105. Gallager R, Luttik ML, Jaarsma T. Social Support and Self-care in Heart Failure. J Cardiovasc Nurs. 2011;
- 106. Dickson VV, Buck H, Riegel B. A qualitative meta-analysis of heart failure self-care practices among individuals with multiple comorbid conditions. J Card Fail. 2011;17:413-9.

- 107. Sayers SL, Hanrahan N, Kutney A, et al. Psychiatric comorbidity and greater hospitalization risk, longer length of stay, and higher hospitalization costs in older adults with heart failure. J Am Geriatr Soc. 2007;55:1585-91.
- 108. Sturm HB, Haaijer-Ruskamp FM, Veeger NJ, et al. The relevance of comorbidities for heart failure treatment in primary care: A European survey. Eur J Heart Fail. 2006;8:31-7.
- 109. Dahlstrom U. Frequent non-cardiac comorbidities in patients with chronic heart failure. Eur J Heart Fail. 2005;7:309-16.
- 110. Dansky KH, Vasey J, Bowles K. Use of telehealth by older adults to manage heart failure. Res Gerontol Nurs. 2008;1:25-32.
- 111. Ambardekar AV, Fonarow GC, Hernandez AF, et al. Characteristics and in-hospital outcomes for nonadherent patients with heart failure: findings from Get With The Guidelines-Heart Failure (GWTG-HF). Am Heart J. 2009;158:644-52.
- 112. Bagchi AD, Esposito D, Kim M, et al. Utilization of, and adherence to, drug therapy among medicaid beneficiaries with congestive heart failure. Clin Ther. 2007;29:1771-83.
- 113. Cole JA, Norman H, Weatherby LB, et al. Drug copayment and adherence in chronic heart failure: effect on cost and outcomes. Pharmacotherapy. 2006;26:1157-64.
- 114. De Smedt RH, Jaarsma T, Haaijer-Ruskamp FM, et al. The impact of perceived adverse effects on medication changes in heart failure patients. J Card Fail. 2010;16:135-41.
- 115. Fonarow GC, Albert NM, Curtis AB, et al. Associations between outpatient heart failure process-of-care measures and mortality. Circulation. 2011;123:1601-10.
- 116. Karlsson MR, Edner M, Henriksson P, et al. A nurse-based management program in heart failure patients affects females and persons with cognitive dysfunction most. Patient Educ Couns. 2005;58:146-53.
- 117. Murray MD, Loos B, Tu W, et al. Work patterns of ambulatory care pharmacists with access to electronic guideline-based treatment suggestions. Am J Health Syst Pharm. 1999;56:225-32.
- 118. Ojeda S, Anguita M, Delgado M, et al. Short- and long-term results of a programme for the prevention of readmissions and mortality in patients with heart failure: are effects maintained after stopping the programme? Eur J Heart Fail. 2005;7:921-6.
- 119. Riegel B, Moelter ST, Ratcliffe SJ, et al. Excessive daytime sleepiness is associated with poor medication adherence in adults with heart failure. J Card Fail. 2011;17:340-8.
- 120. van der Wal MH, van Veldhuisen DJ, Veeger NJ, et al. Compliance with non-pharmacological recommendations and outcome in heart failure patients. Eur Heart J. 2010;31:1486-93.
- 121. Lainscak M, Cleland JG, Lenzen MJ, et al. Nonpharmacologic measures and drug compliance in patients with heart failure: data from the EuroHeart Failure Survey. Am J Cardiol. 2007;99:31D-7D.
- 122. Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353:2025-33.
- 123. Arzt M, Floras JS, Logan AG, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007;115:3173-80.
- 124. Ruttanaumpawan P, Logan AG, Floras JS, et al. Effect of continuous positive airway pressure on sleep structure in heart failure patients with central sleep apnea. Sleep. 2009;32:91-8.
- 125. Tamura A, Kawano Y, Naono S, et al. Relationship between beta-blocker treatment and the severity of central sleep apnea in chronic heart failure. Chest. 2007;131:130-5.
- 126. Oldenburg O, Faber L, Vogt J, et al. Influence of cardiac resynchronisation therapy on different types of sleep disordered breathing. Eur J Heart Fail. 2007;9:820-6.
- 127. Giannuzzi P, Temporelli PL, Corra U, et al. Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial. Circulation. 2003;108:554-9.
- 128. Beckers PJ, Denollet J, Possemiers NM, et al. Combined endurance-resistance training vs. endurance training in patients with chronic heart failure: a prospective randomized study. Eur Heart J. 2008;29:1858-66.
- 129. Karapolat H, Demir E, Bozkaya YT, et al. Comparison of hospital-based versus home-based exercise training in patients with heart failure: effects on functional capacity, quality of life, psychological symptoms, and hemodynamic parameters. Clin Res Cardiol. 2009;98:635-42.
- 130. Brubaker PH, Moore JB, Stewart KP, et al. Endurance exercise training in older patients with heart failure: results from a randomized, controlled, single-blind trial. J Am Geriatr Soc. 2009;57:1982-9.
- 131. Flynn KE, Pina IL, Whellan DJ, et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1451-9.
- 132. Hwang CL, Chien CL, Wu YT. Resistance training increases 6-minute walk distance in people with chronic heart failure: a systematic review. J Physiother. 2010;56:87-96.
- 133. Jolly K, Taylor RS, Lip GY, et al. A randomized trial of the addition of home-based exercise to specialist heart failure nurse care: the Birmingham Rehabilitation Uptake Maximisation study for patients with Congestive Heart Failure (BRUM-CHF) study. Eur J Heart Fail. 2009;11:205-13.
- 134. Kitzman DW, Brubaker PH, Morgan TM, et al. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Circ Heart Fail. 2010;3:659-67.
- 135. McKelvie RS, Teo KK, Roberts R, et al. Effects of exercise training in patients with heart failure: the Exercise Rehabilitation Trial (EXERT). Am Heart J. 2002;144:23-30.

- 136. Miche E, Roelleke E, Wirtz U, et al. Combined endurance and muscle strength training in female and male patients with chronic heart failure. Clin Res Cardiol. 2008;97:615-22.
- 137. Nilsson BB, Westheim A, Risberg MA. Long-term effects of a group-based high-intensity aerobic interval-training program in patients with chronic heart failure. Am J Cardiol. 2008;102:1220-4.
- 138. O'Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1439-50.
- 139. Piepoli MF, Davos C, Francis DP, et al. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ. 2004;328:189.
- 140. Pu CT, Johnson MT, Forman DE, et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol. 2001;90:2341-50.
- 141. Senden PJ, Sabelis LW, Zonderland ML, et al. The effect of physical training on workload, upper leg muscle function and muscle areas in patients with chronic heart failure. Int J Cardiol. 2005;100:293-300.
- 142. Van Berendoncks AM, Beckers P, Hoymans VY, et al. Exercise training reduces circulating adiponectin levels in patients with chronic heart failure. Clin Sci (Lond). 2010;118:281-9.
- 143. van Tol BA, Huijsmans RJ, Kroon DW, et al. Effects of exercise training on cardiac performance, exercise capacity and quality of life in patients with heart failure: a meta-analysis. Eur J Heart Fail. 2006;8:841-50.
- 144. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797-805.
- 145. Massie BM, O'Connor CM, Metra M, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010;363:1419-28.
- 146. Giamouzis G, Butler J, Starling RC, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail. 2010;16:922-30.
- 147. Allen LA, Turer AT, Dewald T, et al. Continuous versus bolus dosing of Furosemide for patients hospitalized for heart failure. Am J Cardiol. 2010;105:1794-7.
- 148. Thomson MR, Nappi JM, Dunn SP, et al. Continuous versus intermittent infusion of furosemide in acute decompensated heart failure. J Card Fail. 2010;16:188-93.
- 149. Peacock WF, De MT, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117-26.
- 150. Mielniczuk LM, Tsang SW, Desai AS, et al. The association between high-dose diuretics and clinical stability in ambulatory chronic heart failure patients. J Card Fail. 2008;14:388-93.
- 151. Cotter G, Dittrich HC, Weatherley BD, et al. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail. 2008;14:631-40.
- 152. Ahmed A, Aronow WS. A propensity-matched study of the association of physical function and outcomes in geriatric heart failure. Arch Gerontol Geriatr. 2008;46:161-72.
- 153. Gheorghiade M, Konstam MA, Burnett JC, Jr., et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA. 2007;297:1332-43.
- 154. Konstam MA, Gheorghiade M, Burnett JC, Jr., et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297:1319-31.
- 155. Ahmed A, Husain A, Love TE, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J. 2006;27:1431-9.
- 156. Domanski M, Tian X, Haigney M, et al. Diuretic use, progressive heart failure, and death in patients in the DIG study. J Card Fail. 2006;12:327-32.
- 157. Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol. 2006;97:1759-64.
- 158. Salvador DR, Rey NR, Ramos GC, et al. Continuous infusion versus bolus injection of loop diuretics in congestive heart failure. Cochrane Database Syst Rev. 2005;CD003178.
- 159. Domanski M, Norman J, Pitt B, et al. Diuretic use, progressive heart failure, and death in patients in the Studies Of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 2003;42:705-8.
- 160. Rogers HL, Marshall J, Bock J, et al. A randomized, controlled trial of the renal effects of ultrafiltration as compared to furosemide in patients with acute decompensated heart failure. J Card Fail. 2008;14:1-5.
- 161. Costanzo MR, Guglin ME, Saltzberg MT, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675-83.
- 162. Liang KV, Hiniker AR, Williams AW, et al. Use of a novel ultrafiltration device as a treatment strategy for diuretic resistant, refractory heart failure: initial clinical experience in a single center. J Card Fail. 2006;12:707-14.
- 163. Bart BA, Boyle A, Bank AJ, et al. Ultrafiltration versus usual care for hospitalized patients with heart failure: the Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure (RAPID-CHF) trial. J Am Coll Cardiol. 2005;46:2043-6.
- 164. Costanzo MR, Saltzberg M, O'Sullivan J, et al. Early ultrafiltration in patients with decompensated heart failure and diuretic resistance. J Am Coll Cardiol. 2005;46:2047-51.
- 165. Agostoni P, Marenzi G, Lauri G, et al. Sustained improvement in functional capacity after removal of body fluid with isolated ultrafiltration in chronic cardiac insufficiency: failure of furosemide to provide the same result. Am J Med. 1994;96:191-9.

- 166. Pepi M, Marenzi GC, Agostoni PG, et al. Sustained cardiac diastolic changes elicited by ultrafiltration in patients with moderate congestive heart failure: pathophysiological correlates. Br Heart J. 1993;70:135-40.
- 167. Agostoni PG, Marenzi GC, Pepi M, et al. Isolated ultrafiltration in moderate congestive heart failure. J Am Coll Cardiol. 1993;21:424-31.
- 168. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J Med. 1987;316:1429-35.
- 169. Swedberg K, Kjekshus J, Snapinn S. Long-term survival in severe heart failure in patients treated with enalapril. Ten year follow-up of CONSENSUS I. Eur Heart J. 1999;20:136-9.
- 170. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med. 1991;325:293-302.
- 171. Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999;100:2312-8.
- 172. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993;342:821-8.
- 173. Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med. 1995;333:1670-6.
- 174. Granger CB, McMurray JJ, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362:772-6.
- 175. McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003;362:767-71.
- 176. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893-906.
- 177. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667-75.
- 178. Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009;374:1840-8.
- 179. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet. 2003;362:759-66.
- 180. CBIS II Authors. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353:9-13.
- 181. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001-7.
- 182. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651-8.
- 183. Flather MD, Shibata MC, Coats AJ, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005;26:215-25.
- 184. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344:1659-67.
- 185. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003;362:7-13.
- 186. Willenheimer R, van Veldhuisen DJ, Silke B, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005;112:2426-35.
- 187. Homma S, Thompson JL, Pullicino PM, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012;366:1859-69.
- 188. Cokkinos DV, Haralabopoulos GC, Kostis JB, et al. Efficacy of antithrombotic therapy in chronic heart failure: the HELAS study. Eur J Heart Fail. 2006;8:428-32.
- 189. Cleland JG, Ghosh J, Freemantle N, et al. Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS-US, RIO-Lipids and cardiac resynchronisation therapy in heart failure. Eur J Heart Fail. 2004;6:501-8.
- 190. Massie BM, Collins JF, Ammon SE, et al. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure: the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial. Circulation. 2009;119:1616-24.

- 191. Echemann M, Alla F, Briancon S, et al. Antithrombotic therapy is associated with better survival in patients with severe heart failure and left ventricular systolic dysfunction (EPICAL study). Eur J Heart Fail. 2002;4:647-54.
- 192. Wojnicz R, Nowak J, Szygula-Jurkiewicz B, et al. Adjunctive therapy with low-molecular-weight heparin in patients with chronic heart failure secondary to dilated cardiomyopathy: one-year follow-up results of the randomized trial. Am Heart J. 2006;152:713.e1-713.e7.
- 193. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139-51.
- 194. Connolly S, Pogue J, Hart R, et al. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet. 2006;367:1903-12.
- 195. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981-92.
- 196. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883-91.
- 197. Belch JJ, Lowe GD, Ward AG, et al. Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J. 1981;26:115-7.
- 198. Cohen AT, Davidson BL, Gallus AS, et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomised placebo controlled trial. BMJ. 2006;332:325-9.
- 199. Tebbe U, Schellong SM, Haas S, et al. Certoparin versus unfractionated heparin to prevent venous thromboembolic events in patients hospitalized because of heart failure: a subgroup analysis of the randomized, controlled CERTIFY study. Am Heart J. 2011;161:322-8.
- 200. Kleber FX, Witt C, Vogel G, et al. Randomized comparison of enoxaparin with unfractionated heparin for the prevention of venous thromboembolism in medical patients with heart failure or severe respiratory disease. Am Heart J. 2003;145:614-21.
- 201. Turpie AG. Thrombosis prophylaxis in the acutely ill medical patient: insights from the prophylaxis in MEDical patients with ENOXaparin (MEDENOX) trial. Am J Cardiol. 2000;86:48M-52M.
- 202. Horwich TB, MacLellan WR, Fonarow GC. Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure. J Am Coll Cardiol. 2004;43:642-8.
- 203. Mozaffarian D, Nye R, Levy WC. Statin therapy is associated with lower mortality among patients with severe heart failure. Am J Cardiol. 2004;93:1124-9.
- 204. Ray JG, Gong Y, Sykora K, et al. Statin use and survival outcomes in elderly patients with heart failure. Arch Intern Med. 2005;165:62-7.
- 205. Foody JM, Shah R, Galusha D, et al. Statins and mortality among elderly patients hospitalized with heart failure. Circulation. 2006;113:1086-92.
- 206. Anker SD, Clark AL, Winkler R, et al. Statin use and survival in patients with chronic heart failure--results from two observational studies with 5200 patients. Int J Cardiol. 2006;112:234-42.
- 207. Folkeringa RJ, Van Kraaij DJ, Tieleman RG, et al. Statins associated with reduced mortality in patients admitted for congestive heart failure. J Card Fail. 2006;12:134-8.
- 208. Go AS, Lee WY, Yang J, et al. Statin therapy and risks for death and hospitalization in chronic heart failure. JAMA. 2006;296:2105-11.
- 209. Krum H, Bailey M, Meyer W, et al. Impact of statin therapy on clinical outcomes in chronic heart failure patients according to beta-blocker use: results of CIBIS II. Cardiology. 2007;108:28-34.
- 210. Dickinson MG, Ip JH, Olshansky B, et al. Statin use was associated with reduced mortality in both ischemic and nonischemic cardiomyopathy and in patients with implantable defibrillators: mortality data and mechanistic insights from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Am Heart J. 2007;153:573-8.
- 211. Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248-61.
- 212. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1231-9.
- 213. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223-30.
- 214. Macchia A, Levantesi G, Franzosi MG, et al. Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur J Heart Fail. 2005;7:904-9.
- 215. Nodari S, Triggiani M, Campia U, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2011;57:870-9.
- 216. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N Engl J Med. 1989;321:406-12.

- 217. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival With Oral d-Sotalol. Lancet. 1996;348:7-12.
- 218. Kober L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358:2678-87.
- 219. The effect of diltiazem on mortality and reinfarction after myocardial infarction. The Multicenter Diltiazem Postinfarction Trial Research Group. N Engl J Med. 1988;319:385-92.
- 220. Goldstein RE, Boccuzzi SJ, Cruess D, et al. Diltiazem increases late-onset congestive heart failure in postinfarction patients with early reduction in ejection fraction. The Adverse Experience Committee; and the Multicenter Diltiazem Postinfarction Research Group. Circulation. 1991;83:52-60.
- 221. Figulla HR, Gietzen F, Zeymer U, et al. Diltiazem improves cardiac function and exercise capacity in patients with idiopathic dilated cardiomyopathy. Results of the Diltiazem in Dilated Cardiomyopathy Trial. Circulation. 1996;94:346-52.
- 222. Effect of verapamil on mortality and major events after acute myocardial infarction (the Danish Verapamil Infarction Trial II--DAVIT II). Am J Cardiol. 1990;66:779-85.
- 223. Elkayam U, Amin J, Mehra A, et al. A prospective, randomized, double-blind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure. Circulation. 1990;82:1954-61.
- 224. Littler WA, Sheridan DJ. Placebo controlled trial of felodipine in patients with mild to moderate heart failure. UK Study Group. Br Heart J. 1995;73:428-33.
- 225. Cohn JN, Ziesche S, Smith R, et al. Effect of the calcium antagonist felodipine as supplementary vasodilator therapy in patients with chronic heart failure treated with enalapril: V-HeFT III. Vasodilator-Heart Failure Trial (V-HeFT) Study Group. Circulation. 1997;96:856-63.
- 226. Stanton E, Hansen M, Wijeysundera HC, et al. A direct comparison of the natriuretic peptides and their relationship to survival in chronic heart failure of a presumed non-ischaemic origin. Eur J Heart Fail. 2005;7:557-65.
- 227. Udelson JE, DeAbate CA, Berk M, et al. Effects of amlodipine on exercise tolerance, quality of life, and left ventricular function in patients with heart failure from left ventricular systolic dysfunction. Am Heart J. 2000;139:503-10.
- 228. Heerdink ER, Leufkens HG, Herings RM, et al. NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics. Arch Intern Med. 1998;158:1108-12.
- 229. Page J, Henry D. Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an underrecognized public health problem. Arch Intern Med. 2000;160:777-84.
- 230. Feenstra J, Heerdink ER, Grobbee DE, et al. Association of nonsteroidal anti-inflammatory drugs with first occurrence of heart failure and with relapsing heart failure: the Rotterdam Study. Arch Intern Med. 2002;162:265-70.
- 231. Mamdani M, Juurlink DN, Lee DS, et al. Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: a populationbased cohort study. Lancet. 2004;363:1751-6.
- 232. Hudson M, Richard H, Pilote L. Differences in outcomes of patients with congestive heart failure prescribed celecoxib, rofecoxib, or non-steroidal anti-inflammatory drugs: population based study. BMJ. 2005;330:1370.
- 233. Gislason GH, Rasmussen JN, Abildstrom SZ, et al. Increased mortality and cardiovascular morbidity associated with use of nonsteroidal anti-inflammatory drugs in chronic heart failure. Arch Intern Med. 2009;169:141-9.
- 234. Delea TE, Edelsberg JS, Hagiwara M, et al. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: a retrospective cohort study. Diabetes Care. 2003;26:2983-9.
- 235. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279-89.
- 236. Dargie HJ, Hildebrandt PR, Riegger GA, et al. A randomized, placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association Functional Class I or II Heart Failure. J Am Coll Cardiol. 2007;49:1696-704.
- 237. Lipscombe LL, Gomes T, Levesque LE, et al. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298:2634-43.
- 238. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125-35.
- 239. Komajda M, McMurray JJ, Beck-Nielsen H, et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J. 2010;31:824-31.
- 240. Giles TD, Elkayam U, Bhattacharya M, et al. Comparison of pioglitazone vs glyburide in early heart failure: insights from a randomized controlled study of patients with type 2 diabetes and mild cardiac disease. Congest Heart Fail. 2010;16:111-7.

- 241. Bourge RC, Abraham WT, Adamson PB, et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol. 2008;51:1073-9.
- 242. Zile MR, Bourge RC, Bennett TD, et al. Application of implantable hemodynamic monitoring in the management of patients with diastolic heart failure: a subgroup analysis of the COMPASS-HF trial. J Card Fail. 2008;14:816-23.
- 243. Adamson PB, Gold MR, Bennett T, et al. Continuous hemodynamic monitoring in patients with mild to moderate heart failure: results of The Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients With Chronic Heart Failure (REDUCEhf) trial. Congest Heart Fail. 2011;17:248-54.
- 244. Conraads VM, Tavazzi L, Santini M, et al. Sensitivity and positive predictive value of implantable intrathoracic impedance monitoring as a predictor of heart failure hospitalizations: the SENSE-HF trial. Eur Heart J. 2011;32:2266-73.
- 245. Abraham WT, Compton S, Haas G, et al. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). Congest Heart Fail. 2011;17:51-5.
- 246. Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658-66.
- 247. Ritzema J, Troughton R, Melton I, et al. Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation. 2010;121:1086-95.
- 248. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140-50.
- 249. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539-49.
- 250. Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329-38.
- 251. Tang AS, Wells GA, Talajic M, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363:2385-95.
- 252. Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608-16.
- 253. Ellenbogen KA, Gold MR, Meyer TE, et al. Primary results from the SmartDelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010;122:2660-8.
- 254. Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294:1625-33.
- 255. Shah MR, Hasselblad V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664-70.
- 256. Allen LA, Rogers JG, Warnica JW, et al. High mortality without ESCAPE: the registry of heart failure patients receiving pulmonary artery catheters without randomization. J Card Fail. 2008;14:661-9.
- 257. Gray A, Goodacre S, Newby DE, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359:142-51.
- 258. Masip J, Roque M, Sanchez B, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta-analysis. JAMA. 2005;294:3124-30.
- 259. Kar B, Gregoric ID, Basra SS, et al. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57:688-96.
- 260. Thiele H, Lauer B, Hambrecht R, et al. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation. 2001;104:2917-22.
- 261. Idelchik GM, Simpson L, Civitello AB, et al. Use of the percutaneous left ventricular assist device in patients with severe refractory cardiogenic shock as a bridge to long-term left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:106-11.
- 262. Cheng JM, den Uil CA, Hoeks SE, et al. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur Heart J. 2009;30:2102-8.
- 263. Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52:1584-8.
- 264. Burkhoff D, Cohen H, Brunckhorst C, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152:469-8.
- 265. Guazzi M, Vicenzi M, Arena R, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4:8-17.
- 266. Tedford RJ, Hemnes AR, Russell SD, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1:213-9.
- 267. Lewis GD, Shah R, Shahzad K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116:1555-62.

- 268. Guazzi M, Samaja M, Arena R, et al. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50:2136-44.
- 269. Oliva F, Latini R, Politi A, et al. Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. Am Heart J. 1999;138:247-53.
- 270. Follath F, Cleland JG, Just H, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet. 2002;360:196-202.
- 271. Cuffe MS, Califf RM, Adams KF, Jr., et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541-7.
- 272. Felker GM, Benza RL, Chandler AB, et al. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol. 2003;41:997-1003.
- 273. Abraham WT, Adams KF, Fonarow GC, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46:57-64.
- 274. Mebazaa A, Nieminen MS, Packer M, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA. 2007;297:1883-91.
- 275. Feldman AM, Oren RM, Abraham WT, et al. Low-dose oral enoximone enhances the ability to wean patients with ultra-advanced heart failure from intravenous inotropic support: results of the oral enoximone in intravenous inotrope-dependent subjects trial. Am Heart J. 2007;154:861-9.
- 276. Elkayam U, Tasissa G, Binanay C, et al. Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am Heart J. 2007;153:98-104.
- 277. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med. 1991;325:1468-75.
- 278. O'Connor CM, Gattis WA, Uretsky BF, et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1999;138:78-86.
- 279. Hershberger RE, Nauman D, Walker TL, et al. Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in patients with refractory endstage heart failure. J Card Fail. 2003;9:180-7.
- 280. Gorodeski EZ, Chu EC, Reese JR, et al. Prognosis on chronic dobutamine or milrinone infusions for stage D heart failure. Circ Heart Fail. 2009;2:320-4.
- 281. Metra M, Eichhorn E, Abraham WT, et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J. 2009;30:3015-26.
- 282. Brozena SC, Twomey C, Goldberg LR, et al. A prospective study of continuous intravenous milrinone therapy for status IB patients awaiting heart transplant at home. J Heart Lung Transplant. 2004;23:1082-6.
- 283. Aranda JM, Jr., Schofield RS, Pauly DF, et al. Comparison of dobutamine versus milrinone therapy in hospitalized patients awaiting cardiac transplantation: a prospective, randomized trial. Am Heart J. 2003;145:324-9.
- 284. Stevenson LW, Miller LW, Desvigne-Nickens P, et al. Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure). Circulation. 2004;110:975-81.
- 285. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435-43.
- 286. Rogers JG, Butler J, Lansman SL, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50:741-7.
- 287. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241-51.
- 288. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312-21.
- 289. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885-96.
- 290. Lahpor J, Khaghani A, Hetzer R, et al. European results with a continuous-flow ventricular assist device for advanced heart-failure patients. Eur J Cardiothorac Surg. 2010;37:357-61.
- 291. Starling RC, Naka Y, Boyle AJ, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57:1890-8.
- 292. University of Alabama Birmingham. INTERMACS Manual of Operations V2.3. User's Guide 2008: Available at: http://www.uab.edu/ctsresearch/intermacs/Document%20Library/Site%20Users%20Guide%20v2.3%20update%2006052009.pdf . Accessed October 18, 2011.
- 293. Grady KL, Meyer PM, Dressler D, et al. Longitudinal change in quality of life and impact on survival after left ventricular assist device implantation. Ann Thorac Surg. 2004;77:1321-7.
- 294. Elhenawy AM, Algarni KD, Rodger M, et al. Mechanical circulatory support as a bridge to transplant candidacy. J Card Surg. 2011;26:542-7.

- 295. Alba AC, Rao V, Ross HJ, et al. Impact of fixed pulmonary hypertension on post-heart transplant outcomes in bridge-to-transplant patients. J Heart Lung Transplant. 2010;29:1253-8.
- 296. Nair PK, Kormos RL, Teuteberg JJ, et al. Pulsatile left ventricular assist device support as a bridge to decision in patients with end-stage heart failure complicated by pulmonary hypertension. J Heart Lung Transplant. 2010;29:201-8.
- 297. Greenberg B, Czerska B, Delgado RM, et al. Effects of continuous aortic flow augmentation in patients with exacerbation of heart failure inadequately responsive to medical therapy: results of the Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy (MOMENTUM). Circulation. 2008;118:1241-9.
- 298. Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276-83.
- 299. Boyle AJ, Ascheim DD, Russo MJ, et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant. 2011;30:402-7.
- 300. Lietz K, Long JW, Kfoury AG, et al. Impact of center volume on outcomes of left ventricular assist device implantation as destination therapy: analysis of the Thoratec HeartMate Registry, 1998 to 2005. Circ Heart Fail. 2009;2:3-10.
- 301. Holman WL, Kormos RL, Naftel DC, et al. Predictors of death and transplant in patients with a mechanical circulatory support device: a multi-institutional study. J Heart Lung Transplant. 2009;28:44-50.
- 302. John R, Pagani FD, Naka Y, et al. Post-cardiac transplant survival after support with a continuous-flow left ventricular assist device: impact of duration of left ventricular assist device support and other variables. J Thorac Cardiovasc Surg. 2010;140:174-81.
- 303. Cleveland JC, Jr., Naftel DC, Reece TB, et al. Survival after biventricular assist device implantation: an analysis of the Interagency Registry for Mechanically Assisted Circulatory Support database. J Heart Lung Transplant. 2011;30:862-9.
- 304. Rogers JG, Aaronson KD, Boyle AJ, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55:1826-34.
- 305. Allen JG, Weiss ES, Schaffer JM, et al. Quality of life and functional status in patients surviving 12 months after left ventricular assist device implantation. J Heart Lung Transplant. 2010;29:278-85.
- 306. Lund LH, Aaronson KD, Mancini DM. Predicting survival in ambulatory patients with severe heart failure on beta-blocker therapy. Am J Cardiol. 2003;92:1350-4.
- 307. Butler J, Khadim G, Paul KM, et al. Selection of patients for heart transplantation in the current era of heart failure therapy. J Am Coll Cardiol. 2004;43:787-93.
- 308. Arena R, Myers J, Aslam SS, et al. Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J. 2004;147:354-60.
- 309. Chase P, Arena R, Guazzi M, et al. Prognostic usefulness of the functional aerobic reserve in patients with heart failure. Am Heart J. 2010;160:922-7.
- 310. Ferreira AM, Tabet JY, Frankenstein L, et al. Ventilatory efficiency and the selection of patients for heart transplantation. Circ Heart Fail. 2010;3:378-86.
- 311. Goda A, Lund LH, Mancini D. The Heart Failure Survival Score outperforms the peak oxygen consumption for heart transplantation selection in the era of device therapy. J Heart Lung Transplant. 2011;30:315-25.
- 312. Grady KL, Jalowiec A, White-Williams C. Improvement in quality of life in patients with heart failure who undergo transplantation. J Heart Lung Transplant. 1996;15:749-57.
- 313. Kobashigawa JA, Leaf DA, Lee N, et al. A controlled trial of exercise rehabilitation after heart transplantation. N Engl J Med. 1999;340:272-7.
- 314. Grady KL, Jalowiec A, White-Williams C. Predictors of quality of life in patients at one year after heart transplantation. J Heart Lung Transplant. 1999;18:202-10.
- 315. Salyer J, Flattery MP, Joyner PL, et al. Lifestyle and quality of life in long-term cardiac transplant recipients. J Heart Lung Transplant. 2003;22:309-21.
- 316. Habedank D, Ewert R, Hummel M, et al. Changes in exercise capacity, ventilation, and body weight following heart transplantation. Eur J Heart Fail. 2007;9:310-6.
- 317. Grady KL, Naftel DC, Young JB, et al. Patterns and predictors of physical functional disability at 5 to 10 years after heart transplantation. J Heart Lung Transplant. 2007;26:1182-91.
- 318. Bull DA, Karwande SV, Hawkins JA, et al. Long-term results of cardiac transplantation in patients older than sixty years. UTAH Cardiac Transplant Program. J Thorac Cardiovasc Surg. 1996;111:423-7.
- 319. Deng MC, De Meester JM, Smits JM, et al. Effect of receiving a heart transplant: analysis of a national cohort entered on to a waiting list, stratified by heart failure severity. Comparative Outcome and Clinical Profiles in Transplantation (COCPIT) Study Group. BMJ. 2000;321:540-5.
- 320. Klotz S, Deng MC, Hanafy D, et al. Reversible pulmonary hypertension in heart transplant candidates--pretransplant evaluation and outcome after orthotopic heart transplantation. Eur J Heart Fail. 2003;5:645-53.
- 321. Kirklin JK, Naftel DC, Bourge RC, et al. Evolving trends in risk profiles and causes of death after heart transplantation: a ten-year multi-institutional study. J Thorac Cardiovasc Surg. 2003;125:881-90.
- 322. Radovancevic B, McGiffin DC, Kobashigawa JA, et al. Retransplantation in 7,290 primary transplant patients: a 10-year multi-institutional study. J Heart Lung Transplant. 2003;22:862-8.

- 323. Kuppahally SS, Valantine HA, Weisshaar D, et al. Outcome in cardiac recipients of donor hearts with increased left ventricular wall thickness. Am J Transplant. 2007;7:2388-95.
- 324. Rasmusson KD, Stehlik J, Brown RN, et al. Long-term outcomes of cardiac transplantation for peri-partum cardiomyopathy: a multiinstitutional analysis. J Heart Lung Transplant. 2007;26:1097-104.
- 325. Wu RS, Gupta S, Brown RN, et al. Clinical outcomes after cardiac transplantation in muscular dystrophy patients. J Heart Lung Transplant. 2010;29:432-8.
- 326. Shuhaiber JH, Moore J, Dyke DB. The effect of transplant center volume on survival after heart transplantation: a multicenter study. J Thorac Cardiovasc Surg. 2010;139:1064-9.
- 327. Finfer S, Chittock DR, Su SY, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283-97.
- 328. Kosiborod M, Inzucchi SE, Spertus JA, et al. Elevated admission glucose and mortality in elderly patients hospitalized with heart failure. Circulation. 2009;119:1899-907.
- 329. Flores-Le Roux JA, Comin J, Pedro-Botet J, et al. Seven-year mortality in heart failure patients with undiagnosed diabetes: an observational study. Cardiovasc Diabetol. 2011;10:39.
- 330. Berry C, Brett M, Stevenson K, et al. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute heart failure. Heart. 2008;94:296-304.
- 331. Garty M, Cohen E, Zuchenko A, et al. Blood transfusion for acute decompensated heart failure--friend or foe? Am Heart J. 2009;158:653-8.
- 332. Singer AJ, Emerman C, Char DM, et al. Bronchodilator therapy in acute decompensated heart failure patients without a history of chronic obstructive pulmonary disease. Ann Emerg Med. 2008;51:25-34.
- 333. Maak CA, Tabas JA, McClintock DE. Should acute treatment with inhaled beta agonists be withheld from patients with dyspnea who may have heart failure? J Emerg Med. 2011;40:135-45.
- 334. Logeart D, Tabet JY, Hittinger L, et al. Transient worsening of renal function during hospitalization for acute heart failure alters outcome. Int J Cardiol. 2008;127:228-32.
- 335. Smith GL, Lichtman JH, Bracken MB, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47:1987-96.
- 336. Metra M, Nodari S, Parrinello G, et al. Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail. 2008;10:188-95.
- 337. Cowie MR, Komajda M, Murray-Thomas T, et al. Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J. 2006;27:1216-22.
- 338. Komukai K, Ogawa T, Yagi H, et al. Decreased renal function as an independent predictor of re-hospitalization for congestive heart failure. Circ J. 2008;72:1152-7.
- 339. Akhter MW, Aronson D, Bitar F, et al. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol. 2004;94:957-60.
- 340. Nohria A, Hasselblad V, Stebbins A, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268-74.
- 341. Krumholz HM, Chen YT, Vaccarino V, et al. Correlates and impact on outcomes of worsening renal function in patients > or =65 years of age with heart failure. Am J Cardiol. 2000;85:1110-3.
- 342. Forman DE, Butler J, Wang Y, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43:61-7.
- 343. Klein L, Massie BM, Leimberger JD, et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail. 2008;1:25-33.
- 344. Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med. 2000;343:246-53.
- 345. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA. 2002;287:1531-40.
- 346. Peacock WF, Holland R, Gyarmathy R, et al. Observation unit treatment of heart failure with nesiritide: results from the proaction trial. J Emerg Med. 2005;29:243-52.
- 347. Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111:1487-91.
- 348. Sackner-Bernstein JD, Kowalski M, Fox M, et al. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA. 2005;293:1900-5.
- 349. Witteles RM, Kao D, Christopherson D, et al. Impact of nesiritide on renal function in patients with acute decompensated heart failure and pre-existing renal dysfunction a randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol. 2007;50:1835-40.
- 350. Yancy CW, Singh A. Potential applications of outpatient nesiritide infusions in patients with advanced heart failure and concomitant renal insufficiency (from the Follow-Up Serial Infusions of Nesiritide [FUSION I] trial). Am J Cardiol. 2006;98:226-9.
- 351. Yancy CW, Krum H, Massie BM, et al. Safety and efficacy of outpatient nesiritide in patients with advanced heart failure: results of the Second Follow-Up Serial Infusions of Nesiritide (FUSION II) trial. Circ Heart Fail. 2008;1:9-16.
- 352. O'Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32-43.

- 353. Fonarow GC, Abraham WT, Albert NM, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure: findings from the OPTIMIZE-HF program. J Am Coll Cardiol. 2008;52:190-9.
- 354. Fonarow GC, Abraham WT, Albert NM, et al. Dosing of beta-blocker therapy before, during, and after hospitalization for heart failure (from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure). Am J Cardiol. 2008;102:1524-9.
- 355. Gattis WA, O'Connor CM, Gallup DS, et al. Predischarge initiation of carvedilol in patients hospitalized for decompensated heart failure: results of the Initiation Management Predischarge: Process for Assessment of Carvedilol Therapy in Heart Failure (IMPACT-HF) trial. J Am Coll Cardiol. 2004;43:1534-41.
- 356. Metra M, Torp-Pedersen C, Cleland JG, et al. Should beta-blocker therapy be reduced or withdrawn after an episode of decompensated heart failure? Results from COMET. Eur J Heart Fail. 2007;9:901-9.
- 357. Fonarow GC, Abraham WT, Albert NM, et al. Prospective evaluation of beta-blocker use at the time of hospital discharge as a heart failure performance measure: results from OPTIMIZE-HF. J Card Fail. 2007;13:722-31.
- 358. Fonarow GC, Abraham WT, Albert NM, et al. Carvedilol use at discharge in patients hospitalized for heart failure is associated with improved survival: an analysis from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2007;153:82-11.
- 359. Thilly N, Briancon S, Juilliere Y, et al. Improving ACE inhibitor use in patients hospitalized with systolic heart failure: a cluster randomized controlled trial of clinical practice guideline development and use. J Eval Clin Pract. 2003;9:373-82.
- 360. Hamaguchi S, Kinugawa S, Tsuchihashi-Makaya M, et al. Spironolactone use at discharge was associated with improved survival in hospitalized patients with systolic heart failure. Am Heart J. 2010;160:1156-62.
- 361. Ko DT, Juurlink DN, Mamdani MM, et al. Appropriateness of spironolactone prescribing in heart failure patients: a population-based study. J Card Fail. 2006;12:205-10.
- 362. Dhaliwal AS, Bredikis A, Habib G, et al. Digoxin and clinical outcomes in systolic heart failure patients on contemporary background heart failure therapy. Am J Cardiol. 2008;102:1356-60.
- 363. Ahmed A, Allman RM, DeLong JF. Inappropriate use of digoxin in older hospitalized heart failure patients. J Gerontol A Biol Sci Med Sci. 2002;57:M138-M143.
- 364. Krantz MJ, Ambardekar AV, Kaltenbach L, et al. Patterns and predictors of evidence-based medication continuation among hospitalized heart failure patients (from Get With the Guidelines-Heart Failure). Am J Cardiol. 2011;107:1818-23.
- 365. Fonarow GC, Gheorghiade M, Abraham WT. Importance of in-hospital initiation of evidence-based medical therapies for heart failure-a review. Am J Cardiol. 2004;94:1155-60.
- 366. Fonarow GC, Yancy CW, Heywood JT. Adherence to heart failure quality-of-care indicators in US hospitals: analysis of the ADHERE Registry. Arch Intern Med. 2005;165:1469-77.
- 367. Fonarow GC, Abraham WT, Albert NM, et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA. 2007;297:61-70.
- 368. Lappe JM, Muhlestein JB, Lappe DL, et al. Improvements in 1-year cardiovascular clinical outcomes associated with a hospital-based discharge medication program. Ann Intern Med. 2004;141:446-53.
- 369. Weintraub NL, Collins SP, Pang PS, et al. Acute heart failure syndromes: emergency department presentation, treatment, and disposition: current approaches and future aims: a scientific statement from the American Heart Association. Circulation. 2010;122:1975-96.
- 370. Roy D, Talajic M, Dubuc M, et al. Atrial fibrillation and congestive heart failure. Curr Opin Cardiol. 2009;24:29-34.
- 371. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347:1825-33.
- 372. Eikelboom JW, Wallentin L, Connolly SJ, et al. Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) trial. Circulation. 2011;123:2363-72.
- 373. Fox KA, Piccini JP, Wojdyla D, et al. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur Heart J. 2011;32:2387-94.
- 374. Sochalski J, Jaarsma T, Krumholz HM, et al. What works in chronic care management: the case of heart failure. Health Aff (Millwood). 2009;28:179-89.
- 375. Laramee AS, Levinsky SK, Sargent J, et al. Case management in a heterogeneous congestive heart failure population: a randomized controlled trial. Arch Intern Med. 2003;163:809-17.
- 376. Peters-Klimm F, Campbell S, Hermann K, et al. Case management for patients with chronic systolic heart failure in primary care: the HICMan exploratory randomised controlled trial. Trials. 2010;11:56.
- 377. Correia J, Silva FF, Roque C, et al. Impact of a specialized outpatient heart failure follow-up program on hospitalization frequency and functional status of patients with advanced heart failure. Rev Port Cardiol. 2007;26:335-43.
- 378. Conte MR, Mainardi L, Iazzolino E, et al. [Outpatient medical and nurse management program in patients with chronic heart failure in a large territorial area in Piedmont. Four years of follow-up]. Ital Heart J Suppl. 2005;6:812-20.

- 379. Clark RA, Inglis SC, McAlister FA, et al. Telemonitoring or structured telephone support programmes for patients with chronic heart failure: systematic review and meta-analysis. BMJ. 2007;334:942.
- 380. Inglis SC, Clark RA, McAlister FA, et al. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Cochrane Database Syst Rev. 2010;CD007228.
- 381. Riegel B, Carlson B, Kopp Z, et al. Effect of a standardized nurse case-management telephone intervention on resource use in patients with chronic heart failure. Arch Intern Med. 2002;162:705-12.
- 382. Riegel B, Carlson B, Glaser D, et al. Randomized controlled trial of telephone case management in Hispanics of Mexican origin with heart failure. J Card Fail. 2006;12:211-9.
- 383. Chaudhry SI, Phillips CO, Stewart SS, et al. Telemonitoring for patients with chronic heart failure: a systematic review. J Card Fail. 2007;13:56-62.
- 384. Fonarow GC, Heywood JT, Heidenreich PA, et al. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153:1021-8.
- 385. Fonarow GC, Albert NM, Curtis AB, et al. Improving evidence-based care for heart failure in outpatient cardiology practices: primary results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Circulation. 2010;122:585-96.