2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery

Data Supplement

(Section numbers correspond to the full-text guideline.)

Data Supplement 1. Coronary Artery Disease (Section 2.1)	2
Data Supplement 2. Influence of Age and Sex (Section 2.1)	4
Data Supplement 3. HF and Cardiomyopathy (Sections 2.2 and 2.3)	7
Data Supplement 4. Valvular Heart Disease (Section 2.4)	12
Data Supplement 5. Arrhythmias and Conduction Disorders (Section 2.5)	13
Data Supplement 6. Pulmonary Vascular Disease (Section 2.6)	15
Data Supplement 7. Multivariate Risk Indices (Section 3.1)	17
Data Supplement 8. Exercise Capacity and Functional Capacity (Section 4.1).	18
Data Supplement 9. The 12-Lead ECG (Section 5.1).	20
Data Supplement 10. Assessment of LV Function (Section 5.2)	23
Data Supplement 11. Exercise Stress Testing for Myocardial Ischemia and Functional Capacity (Section 5.3)	25
Data Supplement 12. Cardiopulmonary Exercise Testing (Section 5.4)	30
Data Supplement 13. Pharmacological Stress Testing (Section 5.5)	36
Data Supplement 14. Radionuclide MPI (Section 5.5.2)	36
Data Supplement 15. Dobutamine Stress Echocardiography (Section 5.5.3)	37
Data Supplement 16. Preoperative Coronary Angiography (Section 5.7)	39
Data Supplement 17. Coronary Revascularization Prior to Noncardiac Surgery (Section 6.1)	40
Data Supplement 18. Timing of Elective Noncardiac Surgery in Patients With Previous PCI (Section 6.1.1)	40
Data Supplement 19. Perioperative Beta-Blocker Therapy (Section 6.2.1).	44
Data Supplement 20. Perioperative Statin Therapy (Section 6.2.2)	50
Data Supplement 21. Alpha-2 Agonists (Section 6.2.3)	51
Data Supplement 22. Perioperative Calcium Channel Blockers (Section 6.2.4)	52
Data Supplement 23. Angiotensin-Converting Enzyme Inhibitors (Section 6.2.5)	53
Data Supplement 24. Antiplatelet Agents (Section 6.2.6)	53
Data Supplement 25. Management of Postoperative Arrhythmias and Conduction Disorders (Section 6.3)	58
Data Supplement 26. Perioperative Management of Patients With CIEDs (Section 6.4)	62
Data Supplement 27. Choice of Anesthetic Technique and Agent (Section 7.1)	64
Data Supplement 28. Perioperative Pain Management (Section 7.2)	69
Data Supplement 29. Prophylactic Intraoperative Nitroglycerin (Section 7.3)	71
Data Supplement 30. Maintenance of Body Temperature (Section 7.5)	72
Data Supplement 31. Perioperative Use of Pulmonary Artery Catheters (Section 7.7)	75
Data Supplement 32. Surveillance and Management for Perioperative MI (Section 8.1)	76
References	78

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Pop	ulation	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Wijeysundera DN, et al., 2012 (1) <u>22893606</u>	To evaluate the outcomes of pts who underwent elective intermediate- to high-risk noncardiac surgery after stent implantation	Cohort study, secondary analysis of prospective clinical registry (2003–2009)	8,116 stent pts, who had stents within 10 y prior to noncardiac surgery	N/A	N/A	Surgeries included: AAA repair, carotid endarterectomy, peripheral bypass, total hip or knee replacement, large bowel resection, partial liver resection, Whipple, pneumonectomy, pulmonary lobectomy, gastrectomy, esophagectomy, total abdominal hysterectomy, radical prostatectomy, and cystectomy	N/A	N/A	Stent pts <2 y after stent compared to those pts >2 y after stent at time of noncardiac surgery	Overall mortality for pts who previously had stent was 1.2% (n=100) at 30 d and 5.2% (n=419) at 1 y	N/A	The overall risk of MACE at 30 d was 2.1% (n=170) and at 1 y was 9.8% (n=798). MACE was highest when major elective noncardiac surgery was performed within 45 d after coronary stent.	N/A	Event rates are low, limiting statistical power. Administrative databases may not adequately capture all in- hospital complications.
Mashour GA, et al., 2011 (2) <u>21478735</u>	Assess the incidence and predicators of periop stroke and its role in mortality in noncardiac, non- neurosurgical surgery	Secondary analysis of ACS NSQIP	523,059 pt data sets (deidentified from NSQIP database)	NSQIP participants from 250 participating U.S. medical centers for 4 y (2005– 2008)	N/A	General surgery, orthopedic, urology, otolaryngology, plastics, thoracic, minor vascular, and gynecology cases	Cardiac, major vascular, and neurosurgical cases	N/A	N/A	The incidence of periop stroke was 0.1%	N/A	1. Multivariate analyses indicated MI within 6 mo of surgery and was an independent risk factor for periop stroke. 2. Multivariate analyses indicated HTN (requiring medication) and was an	MI within 6 mo of surgery was an independent risk factor for periop stroke (OR: 13.2; CI: 8.9–19.7; p<0.001). HTN was an independent risk factor for periop stroke (OR: 3.8; CI:	Observational study does not allow for additional data collection for pts exhibiting primary outcome. In addition, the data definitions are clinically relevant, but could not be modified for purposes of

Data Supplement 1. Coronary Artery Disease (Section 2.1)

												independent risk factor for periop stroke.	3.1–4.7; p<0.001).	this study.
Healy KO, et al., 2010 (3) <u>20412467</u>	To evaluate the impact of LVEF on periop outcomes and long-term mortality in pts with HF undergoing intermediate- to high-risk surgery	Retrospective chart review	174 pts	Pts diagnosed with HF who underwent intermediate- or high-risk noncardiac surgery from 2001–2004	N/A	Diagnosis with HF; intermediate- or high-risk noncardiac surgery (including PVD surgery, aortic repair, carotid endarterectomy, head & neck, intraperitoneal, noncardiac intrathoracic, orthopedic or prostate surgery)	N/A	N/A	Pts with HF compared by LVEF (>50% normal; 40%–50% mildly reduced; 30%≥40% moderately reduced; <30% severely reduced)	1. 30.5% (n=53) had \geq 1 periop events: death (n=14, 8.1%); MI (n=26, 14.9%); HF exacerbation (n=44, 25.3%) 2. Severely reduced LVEF (<30%) independently associated with adverse events.	N/A	N/A	1. Multivariate analyses for LVEF was an independent predictor of periop events including mortality (OR: 4.88; CI: 1.78– 14.40).	Small, retrospective chart review from single institution.
Ferket BS, et al., 2011 (4) <u>21474039</u>	To critically appraise guidelines on imaging of asymptomatic CAD	Systematic review	14 guidelines included in the review (published between 2003–2010)	N/A	N/A	 Used IOM definition of clinical practice guidelines. Contained recommendations on imaging of asymptomatic CAD aimed to prevent first coronary event. Involved healthy persons (adults). Produced on behalf of national or international medical specialty society. 	N/A	N/A	N/A	1. 8 of 14 studies recommended against or concluded that there was insufficient evidence to recommend testing of asymptomatic CAD. 2. In 6 of the guidelines testing was indicated for pts with a priori elevated risk level based on absolute CAD risk or multiple risk factors (e.g., Framingham risk score).	N/A	1. 1 guideline recommended CT calcium scoring solely in an intermediate CAD risk population. 2. Guidelines unanimously did not advocate CT calcium scoring for low or high CAD risk pts.	N/A	Only guidelines developed by national or international medical specialty organizations were reviewed
Wijeysundera	To determine	Cohort study	Adult pts	Pts who had	Pts who did	Adults >40 y of	N/A	N/A	N/A	1. Hospital	1. Preop	Effects of	Mortality:	1. Did not

AAA indicates abdominal aortic aneurysm; ACS, American College of Surgeons; CAD, coronary artery disease; CI: confidence interval; CT, computed tomography; HF, heart failure; HR, hazard ratio; HTN, hypertension; IOM, Institute of Medicine; LOS, length of stay; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac event; MI, myocardial infarction; n, subgroup from N; N/A, not applicable; NSQIP, National Surgical Quality Improvement Program; OR: odds ratio; periop, perioperative; preop, preoperative; pt, patient; pts, patients; PVD, peripheral vascular disease; RCRI, Revised Cardiac Risk Index; and RR, relative risk.

Data Supplement 2. Influence of Age and Sex (Section 2.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Po	pulation	Study Intervention	Study Comparator	Endpoints Primary Sefects Secondary			P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Bateman BT, et al., 2009 (6) <u>19194149</u>	To conduct an analysis of AIS to determine incidence, risk factors, and effect of outcome on periop AIS in	Secondary analysis of NIS database	n=131,067 hemicolectomy surgical pts; n=201,235 total hip replacement surgical pts; n=39,339	N/A	N/A	Common noncardiac surgeries: hemicolectomy, total hip replacements, and segmental/ lobar lung	N/A	N/A	N/A	AIS incidence: hemicolectomy 935 cases— 0.7% (95% CI: 0.7%–0.8%); total hip replacement 420 cases—	N/A	 Higher incidence of AIS among pts ≥65 y of age. Higher incidence of AIS among 	1. Among pts >65 y of age, AIS incidence: hemicolectomy 1.0% (95% CI: 0.9%–1.0%); total hip replacement	Limited by range of variables that could be explored as risk factors for AIS. Use of database may

	noncardiac surgical pts		pulmonary lobectomy/ segment resection surgical pts			resection				0.2% (95% CI: 0.2%–0.2%); lobectomy/ segmental lung resection 242 cases—0.6% (95% CI: 0.7%– 0.9%)		female pts and female sex was an independent risk factor for AIS.	0.3% (95% CI: 0.3%–0.3%); lobectomy/ segmental lung resection 0.8% (95% CI: 0.7%–0.9); 2. Female sex independent risk factor (OR: 1.21; CI: 1.07– 1.36; p<0.001).	underestimate morbidity and mortality.
Mashour GA, et al., 2011 (2) <u>21478735</u>	Assess the incidence and predicators of periop stroke and its role in mortality in noncardiac, non- neurosurgical surgery	Secondary analysis of ACS NSQIP	523,059 pt data sets (deidentified from NSQIP database)	NSQIP participants from 250 participating U.S. medical center for 4 y (2005–2008)	N/A	General surgery, orthopedic, urology, otolaryngology, plastics, thoracic, minor vascular, and gynecology cases	Cardiac, major vascular, and neurosurgical cases	N/A	Age dichotomized into 62 y of age and ≥62 y of age	The incidence of periop stroke was 0.1%	N/A	1. Multivariate analyses indicated age ≥62 y of age was an independent risk factor for periop stroke. 2. Multivariate analyses indicated male sex was an independent risk factor for periop stroke.	1. Older age was an independent risk factor for periop stroke (OR: 6.6; CI: 5.4–8.2; p<0.001). 2. Male sex was an independent risk factor for periop stroke (OR: 1.2; CI: 1.0–1.5; p=0.02).	Observational study does not allow for additional data collection for pts exhibiting primary outcome. In addition the data definitions are clinically relevant, but could not be modified for purposes of this study.
Rogers SO, et al., 2007 (7) <u>17544079</u>	To develop and test a risk model for venous thromboembolic events. To develop and validate a risk index for VTE.	Secondary analysis of the PSS	183,069 pt records	Records from 128 VA and 14 private sector academic medical centers in general and peripheral vascular surgery subspecialties from 2002–	None	VTE defined as either PE or DVT	N/A	N/A	N/A	VTE occurred in 1,162 pts	N/A	Female sex was 1 of 15 independent factors associated with an increased risk of VTE compared to males	Female sex as independent risk factor for VTE (OR: 1.370; CI: 1.118–1.680).	Models limited by variables that are not part of NSQIP database that might impact the rates of VTE

				2004										
Dasgupta M, et al., 2009 (8) <u>18068828</u>	To examine if frailty is associated with an increased risk of postop complications	Exploratory, prospective, descriptive	125	N/A	N/A	≥70 y of age, undergoing elective noncardiac surgery	Day surgery procedures, active cancer	N/A	N/A	Occurrence of an in-hospital, postop complication (unrelated to surgical technique). Adverse events occurred in 31/125 pts (25%). Both age (p<0.0074) and EFS scores (p<0.00042), indicators of frailty, were independently associated with being discharge to an institution and having a prolonged LOS.	N/A	N/A	OR was 1.14 for age (95% CI: 1.05–1.24) and 1.22 for EFS score (95% CI: 1.02– 1.6)	Method of outcome identification using chart review. Single center study. Limited sample size.
Healy KO, et al., 2010 (3) <u>20412467</u>	To evaluate the impact of LVEF on periop outcomes and long-term mortality in pts with HF undergoing intermediate- to high-risk noncardiac surgery	Retrospective chart review	174 pts	Pts diagnosed with HF who underwent intermediate- or high-risk noncardiac surgery from 2001–2004	N/A	Diagnosis with HF; intermediate- or high-risk noncardiac surgery (including PVD surgery, aortic repair, carotid endarterectomy, head & neck, intraperitoneal, noncardiac intrathoracic, orthopedic or prostate surgery)	N/A	N/A	Pts with HF compared by LVEF (>50% normal, 40%–50% mildly reduced, 30%–40% moderately reduced, <30% severely reduced)	N/A	≥80 y of age independently associated with adverse events	N/A	Multivariate analyses for older age as an independent predictor of periop events (OR: 3.84; CI: 1.70–8.17)	Small, retrospective chart review from single institution

ACS indicates American College of Surgeons; AIS, acute ischemic stroke; CI, confidence interval; DVT, deep vein thrombosis; EFS, Edmonton Frail Scale; HF, heart failure; HR, hazard ratio; LOS, length of stay; LVEF, left ventricular ejection fraction; n, subgroup from N; N/A, not applicable; NIS, Nationwide Inpatient Sample; NSQIP, National Surgical Quality Improvement Program; OR, odds ratio; PE, pulmonary embolism; periop, perioperative; postop, postoperative; PSS, protein secondary structure; pts, patients; PVD, peripheral vascular disease; RR, relative risk; VA, Veterans Affairs; and VTE, venous thromboembolism.

Data Supplement 3. HF and Cardiomyopathy (Sections 2.2 and 2.3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Popu	lation	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results	
Impact of HF	on Periop and Postop	Outcomes											
Hammill BG, et al., 2008 (9) <u>18362586</u>	To determine operative mortality and 30-d all-cause readmission among pts with HF, CAD, or neither who underwent major noncardiac surgery	Retrospective	159,327 procedures	N/A	N/A	Pts >65 y of age with Medicare FFS coverage, and underwent major noncardiac procedures from 2000–2004	Pts with end-stage renal disease and pts who did not have at least 1 y of Medicare FFS eligibility before surgery	N/A	Pts with HF or CAD against neither	Operative mortality and 30-d all-cause readmission	N/A	Pts with HF were at significantly higher risk for both outcomes compared with pts with CAD	Adjusted HR of mortality and readmission for pts with HF, compared with pts with neither HF nor CAD, were 1.63 (95% CI: 1.52– 1.74) and 1.51 (95% CI: 1.45–1.58), respectively
Hernandez AF, et al., 2004 (10) <u>15464326</u>	To evaluate mortality and readmission rates of pts with HF after major noncardiac surgery	Retrospective	1,532 pts with HF and 1,757 pts with CAD who underwent major noncardiac surgery. 44,512 pts in control group with major noncardiac surgery.	N/A	N/A	>65 y of age; 1997– 1998 5% sample of Medicare beneficiaries, pts with HF who underwent major noncardiac surgery	?	N/A	Pts with HF or CAD against neither	Operative mortality (death before discharge or within 30 d of surgery)	?	Risk-adjusted 30-d readmission rate 0	The risk-adjusted operative mortality (death before discharge or within 30 d of surgery) for HF 11.7%, CAD 6.6%, and control 6.2% (HF vs. CAD, p<0.001; CAD vs. control; p=0.518). The risk- adjusted 30-d readmission rate for was HF 20.0%, CAD 14.2%, and control 11.0% (p<0.001).
van Diepen S, et al., 2011 (11) <u>21709059</u>	To compare the postop mortality of pts with HF, AF, or CAD undergoing major and minor noncardiac	Retrospective	Nonischemic HF (n=7,700), ischemic HF (n=12,249), CAD (n=13,786), or AF (n=4,312)	N/A	N/A	Pts who underwent noncardiac surgery between April 1, 1999–September 31, 2006, in Alberta, Canada	?	N/A	?	The main outcome was 30-d postop mortality.	?	Among pts undergoing minor surgical procedures, the 30-d postop mortality was 8.5% in NIHF, 8.1% in IHF, 2.3% in CAD,	Unadjusted 30-d postop mortality was 9.3% in NIHF, 9.2% in IHF, 2.9% in CAD, and 6.4% in AF (each vs. CAD, p<0.0001). After multivariable

	surgery										-	and 5.7% in AF (p<0.0001)	adjustment, postop mortality remained higher in pts with NIHF, IHF, and AF than in those with CAD (NIHF vs. CAD, OR: 2.92; 95% CI: 2.44–3.48; IHF vs. CAD, OR: 1.98; 95% CI: 1.70–2.31; AF vs. CAD, OR: 1.69; 95% CI: 1.34–2.14).
Xu-Cai YO, et al., 2008 (12) <u>18315993</u>	To evaluate modern surgical outcomes in pts with stable HF undergoing elective major noncardiac surgery and to compare the experience of pts with HF who have reduced vs. preserved LVEF	Retrospective	557 pts with HF (192 LVEF ≤40% and 365 LVEF>40%) and 10,583 controls	N/A	N/A	Pts who underwent systematic evaluation by hospitalists in a preop clinic before having major elective noncardiac surgery between January 1, 2003– March 31, 2006		N/A	Mortality in HF with reduced EF or preserved EF vs. control pts	1-mo postop mortality and1-y mortality	?	Unadjusted differences in mean hospital LOS among pts with HF vs. controls (5.7 vs. 4.3 d; p<0.001) and 1- mo readmission (17.8% vs. 8.5%; p<0.001) were also markedly attenuated in propensity- matched groups	Unadjusted 1-mo postop mortality in pts with both types of HF vs. controls was 1.3% vs. 0.4% (p=0.009), but NS in propensity- matched groups (p=0.09). Crude 1-y HR (p<0.01) for mortality were 1.71 (95% CI: 1.5–2.0) for both types of HF, 2.1 (95% CI: 1.7–2.6) in pts with HF who had LVEF ≤40%, and 1.4 (95% CI: 1.2–1.8) in those who had LVEF >40%; however, the differences were NS in propensity-matched groups (p=0.43).
Impact of LVE	To determine	top Outcomes	11 072 pts	N/A	N/A	31 studies including	>	NI/A	Deaths per	Mortality in	2	The risk of death did	Dts with HE DEE had
analysis Global Group in Chronic Heart Failure (MAGGIC), 2012 (13)	whether survival in pts with HF- PEF is similar to those pts with HF- REF	individual pt data	(10,347 with HF-PEF and 31,625 with HF-REF)			pts with HF	1	IV/A	1,000-pt y	HF-PEF vs. HF-REF		not increase notably until EF fell below 40%.	lower mortality than those with HF-REF (adjusted for age, sex, etiology, and Hx of HTN, diabetes mellitus, and AF; HR: 0.68; 95% CI: 0.64– 0.71)

21821849													
Kazmers A., et al., 1988 (14) <u>3047443</u>	To determine periop (30-d) and subsequent outcome after major vascular surgery in those with severe cardiac dysfunction, defined by LVEF ≤35%	Retrospective	35 pts who required 47 major vascular procedures	N/A	N/A	From August 1, 1984–January 1, 1988, pts with LVEF ≤35% who required vascular surgery	?	N/A	Mortality according to LVEF	Cumulative mortality	?	?	Survival for those with an LVEF ≤29% was significantly worse than for those with an LVEF >29% (p<0.012). The cumulative mortality rate was 59% LVEF ≤29% and 18% in those with LVEF >29% (p<0.029)
Kazmers A., et al., 1988 (15) <u>3348731</u>	To determine periop and long- term mortality according to LVEF in pts undergoing carotid endarterectomy	Retrospective	73 pts before 82 carotid operations	N/A	N/A	Pts who had radionuclide ventrioculography before carotid endarterectomy	?	N/A	Periop and long-term mortality in pts with LVEF <35% vs. LVEF >35%	Periop and cumulative1-y mortality	Periop cardiac complications were more frequent with LVEF ≤35% , occurring in 43% vs.9% in pts with LVEF >35%	?	There was no statistical difference in periop mortality, but cumulative mortality differed, being 57% (4/7) in those with EF of \leq 35% vs. 11% (7/66) in pts with LVEF >35%
McCann RL, Wolfe WG, 1989 <u>2778886</u>	To evaluate the influence of LVEF on both periop and long-term morbidity and mortality	Retrospective	104	N/A	N/A	Preop LVEF measured in 104 of 208 pts undergoing elective AAA	?	N/A	19 pts with LVEF <35% was compared to 85 pts with LVEF >35%	Periop and cumulative mortality	?	?	The periop mortality was not significantly different (low EF, 5%; high EF, 2%). The cumulative life-table survival of the 2 groups was not statistically different. 4-y actuarial survival 0.74 in low EF compared to 0.63 (p=NS) in the high EF group
Healy KO, et al., 2010 (3) <u>20412467</u>	To determine impact of LVEF on outcome in pts with HF undergoing noncardiac surgery	Retrospective	174	?	?	174 subjects who underwent intermediate- or high-risk noncardiac surgery	?	?	?	30-d and long-term mortality	Adverse periop events occurred in 53 (30.5%) of subjects, including 14 (8.1%) deaths within 30 d, 26 (14.9%) MI, and 44 (25.3%) HF exacerbations	Among the factors associated with adverse periop outcomes in the first 30-d were advanced age (e.g., >80 y), diabetes mellitus, and a severely decreased EF (e.g., <30%)	Long-term mortality was high and Cox proportional hazards analysis demonstrated that EF was an independent risk factor for long term mortality

Role of HF in	CV Risk Indices												
Goldman L, et al., 1977 (15, 16) <u>904659</u>	To determine which preop factors affect the development of cardiac complications after major noncardiac operations	Prospective cohort	1,001 pts	N/A	N/A	?	?	?	?	Postop fatality and life- threatening complication	?	36 of the 39 pts manifesting ≥1 life- threatening cardiac complications had pulmonary edema. 9 independent significant correlates of life-threatening and fatal cardiac complications: preop S3 or JVD; MI in the preceding 6 mo; >5 PVC/min; rhythm other than sinus or presence of PACs on preop ECG; >70 y of age; intraperitoneal, intrathoracic or aortic operation; emergency operation; important valvular AS; and poor general medical condition.	Clinical signs of HF including an S3 gallop or JVD were the most significant predictors of postop life- threatening or fatal cardiac complications. In the final analysis, signs of HF carried the highest weight in the original CRI. 10 of the 19 postop cardiac fatalities occurred in the 18 pts at highest risk.
Detsky AS, et al., 1986 (15, 17) <u>3772593</u>	To validate a previously derived multifactorial index in their clinical setting and to test a modified version of the index	Prospective cohort	455	?	?	455 consecutive pts referred to the general medical consultation service for cardiac risk assessment prior to noncardiac surgery	?	?	?	Major cardiac complications	?		The interobserver agreement for S3 and JVD was poor (k statistic, 0.42 and 0.50, respectively). Therefore, to make the diagnosis of HF more objective and reproducible preoperatively, grouped HF into 2 categories as the presence of alveolar pulmonary edema within 1 wk or ever. Definition was stricter; HF still had a major role in predicting events and being a

												major outcome. Of the 43 serious events, there were 10 new or worsened episodes of HF without alveolar pulmonary edema, and 5 episodes of alveolar pulmonary edema.
Lee TH, et al., 1999 (15, 18) <u>10477528</u>	To develop and validate an index for risk of cardiac complications	Prospective cohort	4,315	N/A	N/A	4,315 pts ≥50 y of age undergoing elective major noncardiac procedures in a tertiary-care teaching hospital	?	?	The main outcome measures were major cardiac complications	?	?	HF was both an important predictor and a key complication. Outcome required a formal reading of pulmonary edema on the chest x-ray. In the validation set, it provided the highest OR (4.3) for major cardiac complications. 6 independent predictors of complications were identified in RCRI: high-risk type of surgery, Hx of ischemic heart disease, Hx of CHF, Hx of cerebrovascular disease, preop treatment with insulin, and preop serum creatinine >2.0 mg/dL.

AAA indicates abdominal aortic aneurysm; AF, atrial fibrillation; AS, aortic stenosis; CAD, coronary artery disease; CHF, congestive heart failure; CI, confidence interval; CRI, Cardiac Risk Index; CV, cardiovascular; ECG, electrocardiogram; EF, ejection fraction; FFS, fee-for-service; HF, heart failure; HF-PEF, heart failure with preserved ejection fraction; HF-REF, heart failure with reduced ejection fraction; HR, hazard ratio; HTN, hypertension; Hx, history; IHF, ischemic heart failure; JVD, jugular venous distention; LOS, length of stay; LVEF, left ventricular ejection fraction; MI, myocardial infarction; n, subgroup of N; N/A, not applicable; NIHF, nonischemic heart failure; NS, nonsignificant; OR, odds ratio; PAC, pulmonary artery catheterization; periop, perioperative; postop, postoperative; pts, patients; PVC, premature ventricular contraction; preop, preoperative; RCRI, Revised Cardiac Risk Index; RR, relative risk; and S3, third heart sound.

Data Supplement 4. Valvular Heart Disease (Section 2.4)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient I	Population	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results	Primary Endpoint	
Agarwal S, et al., 2013 (19) <u>23481524</u>	Postop outcomes after nonemergent noncardiac surgery in pts with moderate or severe AS	Retrospective cohort; age, sex, and propensity score matched control	3,170	634	2,536	Moderate AS (AVA=1.0– 1.5 cm ²) or severe AS (AVA<1.0 cm ²)	Emergent surgery	N/A	Pts without AS	Composite of 30-d mortality and postop MI	N/A	30-d mortality, long-term mortality, postop MI, HF, stroke, and LOS	Moderate AS 4.4% vs. control 1.7% (OR: 2.6; p=0.002); Severe AS 5.7% vs. control 2.7% (OR: 2.1; p=0.02)	Retrospective, single center
Calleja AM, et al., 2010 (20) <u>20381670</u>	Postop outcomes after noncardiac surgery in pts with asymptomatic, severe AS	Retrospective; age- and sex- matched control	90	30	60	Severe AS (AVA<1.0 cm ²)	Symptomatic AS, moderate or severe AR	N/A	Pts with mild- to-moderate AS	Composite of in- hospital death, MI, HF, ventricular arrhythmias, and intraoperative hypotension requiring vasopressor	N/A	Intraoperative hypotension requiring vasopressor	AS 33% vs. control 23% (OR: 1.4; p=0.06)	Retrospective, single center, small sample size
Leibowitz D, et al., 2009 (21) <u>19287130</u>	Postop outcomes after hip fracture surgery in pts with severe AS	Retrospective; age-matched control	120	32	88	Severe AS (AVA<1.0 cm ²)	N/A	N/A	Pts without AS	30-d mortality	N/A	Composite of 30-d mortality, ACS, and pulmonary edema	AS 6.2% vs. control 6.8% (OR: 0.9; p=NS)	Retrospective, single center, small sample size
Zahid M, et al., 2005 (22) <u>16054477</u>	Postop outcomes after noncardiac surgery in pts with AS from NHDS database	Retrospective; age and surgical risk-matched control	15,433	5,149	10,284	AS	N/A	N/A	Pts without AS	Composite of in- hospital mortality and MI	N/A	In-hospital MI	AS 8.3% vs. control 7.2%, (OR: 1.2; p=0.01)	Retrospective, claims database
Torsher LC, et al., 1998 (23) <u>9485135</u>	Postop outcomes after noncardiac surgery in pts with severe AS	Retrospective; no control	19	19	N/A	Severe AS (mean gradient >50 mm Hg)	N/A	N/A	N/A	In-hospital mortality	N/A	N/A	AS 10.5%	Retrospective, no control group, single center, small sample size
Lai HC, et al., 2010	Postop outcomes after noncardiac	Retrospective; age, sex, and	334	167	167	Moderate-to- severe AR or	Pt is already intubated,	N/A	Pts without AR	In-hospital mortality	NA	Postop MI, stroke,	AR 9.0% vs. control 1.8%	Retrospective, single center,

©American College of Cardiology Foundation and American Heart Association, Inc.

(24) <u>19930243</u>	surgery in pts with moderate-severe or severe chronic AR	surgical risk- matched control				severe AR	surgery performed with local anesthesia					pulmonary edema, intubation >24 h, and major arrhythmia	(OR: 5.0; p=0.008)	small sample size
Bajaj NS, et al., 2013 (25) <u>23587300</u>	Postop outcomes after nonemergent noncardiac surgery in pts with moderate-to- severe or severe MR	Retrospective; age, sex, and propensity score matched control	1,470	298	1,172	Moderate-to- severe MR or severe MR	Emergent surgery	N/A	Pts without MR	Composite of 30-d mortality and postop MI, HF, and stroke	N/A	30-d mortality, postop MI, HF, stroke, and AF	MR 22.2% vs. control 16.4% (OR: 1.4; p=0.02)	Retrospective, single center
Lai HC, et al., 2007 (26) <u>17576968</u>	Postop outcomes after noncardiac surgery in pts with moderate-to- severe or severe MR	Retrospective; no control	84	84	N/A	Moderate-to- severe MR or severe MR	Pt is already intubated, surgery performed with local anesthesia	N/A	N/A	In-hospital mortality	N/A	Postop MI, stroke, pulmonary edema, intubation >24 h, and major arrhythmia	MR 11.9%	Retrospective, no control group, single center, small sample size

ACS, acute coronary syndrome; AF, atrial fibrillation; AR, aortic regurgitation; AS, aortic stenosis; AVA, aortic valve area; CI, confidence interval; HF, heart failure; HR, hazard ratio; LOS, length of stay; MI, myocardial infarction; MR, mitral regurgitation; NHDS, National Hospital Discharge Survey; N/A, not applicable; NS, nonsignificant; OR, odds ratio; pts, patients; postop, postoperative, and RR, relative risk.

Data Supplement 5. Arrhythmias and Conduction Disorders (Section 2.5)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	· Patient Population		Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Biteker M, et al., 2012 (27) <u>22057953</u>	To determine ECG predictors of periop cardiac events in pts undergoing noncardiac/ nonvascular surgery	Prospective observational cohort	660	660	N/A	660 pts scheduled for elective noncardiac nonvascular surgery expected to stay ≥2 d	Cardiac or vascular surgery, day surgery, emergent surgery, ASA=5	None	None	Abnormal ECG (p=0.019) and AF (p<0.001) predicted PCE on univariate analysis but not multivariate	N/A	Pts with PCEs had longer QTc (437 ms) that those without (413 ms) (OR: 1.043/ms; CI: 1.028/ms– 1.058/ms)	N/A	N/A
Goldman L, et al., 1977	To develop risk score for cardiac events	Prospective observational cohort	1,001	N/A	N/A	All pts >40 y of age undergoing general,	Cardiac or thoracic surgery, no consent	None	None	Rhythm other than sinus (MDFC 0.283)	N/A	N/A	p<0.001	N/A

(16) <u>904659</u>	after noncardiac surgery					orthopedic, or urologic surgery at MGH over a 7 mo period				and PVCs >5/min (MDFC 0.279) both predictive of risk of MACE				
Lee TH, et al., 1999 (18) <u>10477528</u>	To develop revised risk score for cardiac events after noncardiac surgery	Prospective observational cohort	4,315	2,893 derivation	1,422 validation	All pts >50 y of age undergoing noncardiac surgery at 1 center over 5 y	Cardiac surgery, no consent	None	None	Abnormal rhythm not predictive of risk	N/A	N/A	RR 0.8; CI: 0.3–2.6; p=NS	No validation cohort
Mahla E, et al., 1998 (28) <u>9428844</u>	To evaluate whether frequency of periop ventricular dysrhythmia independently predicts risk of noncardiac surgery	Prospective observational cohort	70	70	N/A	70 pts scheduled for noncardiac surgery with ventricular couplets or NSVT	10 pts excluded for poor Holter quality	None	None	Frequency of VPBs not predictive of outcome	N/A	AF did predict worse outcome (p=0.05)	p=NS	N/A
Mangano DT, et al., 1992 (29) <u>1608143</u>	To determine predictors of long-term adverse cardiac events after noncardiac surgery	Prospective observational cohort	444	444	N/A	Consecutive pts at high-risk for CAD undergoing noncardiac surgery at SFVAMC who survived initial hospitalization	Cardiac surgery	None	None	Preop dysrhythmia did not predict adverse outcome	N/A	Preop NSVT did not predict risk	Dysrhythmia RR:1.4 (p=0.08); NSVT HR: 0.7 (CI: 0.2–1.9; p=0.40)	Small study, no control group
O'Kelly B, et al., 1992 (30) <u>1608140</u>	To determine incidence and clinical predictors of periop ventricular arrhythmias during noncardiac surgery	Prospective observational cohort	230	230	N/A	Consecutive males with CAD or high risk for CAD undergoing noncardiac surgery at SFVAMC	N/A	None	None	Preop ventricular arrhythmia predicted periop and postop VA, but not MACE	N/A	N/A	Periop ventricular arrhythmias OR: 7.3 (95% CI: 3.3–16.0); postop ventricular arrhythmias OR: 6.4 (95% CI: 2.7–15.0), nonfatal MI/cardiac death OR :1.6 (95% CI: 0.4–	No validation cohort

6.2)

AF indicates atrial fibrillation; ASA, aspirin; CAD, coronary artery disease; ECG, electrocardiogram; MACE, major adverse cardiac event; MGH, Massachusetts General Hospital; MI, myocardial infarction; N/A, not applicable; NS, nonsignificant; NSVT, nonsustained ventricular tachycardia; PCE, perioperative cardiovascular events; periop, perioperative; pts; patients; PVC, premature ventricular contraction; QTc, corrected QT interval; RR, relative risk; SFVAMC, San Francisco Veterans Affairs Medical Center; VA, ventricular arrhythmia; and VPB, ventricular premature beat.

Data Supplement 6. Pulmonary Vascular Disease (Section 2.6)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Po	opulation	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Ramakrishna G, et al., 2005 (31) <u>15893189</u>	Determine predictors of poor outcome after noncardiac surgery in pts with PH	Retrospective review, single center	145 (all with PH)	None	None	Adults with Group 1, 3, or 4 PH; general anesthesia (100%); intermediate- /high-risk surgery (79%)	Cardiac, obstetric surgery	None	1) pts who died and 2) pts who had morbid event (HF, cardiac ischemia, stroke, respiratory failure, hepatic dysfunction, renal failure, sepsis, dysrhythmia) vs. those who did not	Death in 7% associated with 1) Hx of PE, 2) RAD on ECG, 3) RVH or RV dysfunction on echo, 4) RVSP/systolic BP ratio, 5) vasopressor use intraoperatively, 6) absence of iNO use intraoperatively	N/A	Morbidity in 42% associated with 1) functional class, 2) prior PE, 3) obstructive sleep apnea, 4) 5) vasopressor use intraoperatively	Independent multivariate predictors of postop morbidity: Hx of PE (OR: 7.3; CI: 1.9–38.3; p=0.01); PH symptoms (OR: 2.9; CI: 1.2–7.7; p=0.02); intermediate/high- risk vs. low-risk surgery (OR: 3.03; CI: 1.1–9.4; p=0.04); anesthesia duration >3 h (OR: 2.9; CI: 1.03–4.6; p=0.04)	Retrospective, single center, no comparison group
Minai OA, et al., 2006 (32) <u>16768070</u>	Determine frequency of poor outcome after noncardiac surgery in pts with PH	Retrospective review, single center	28 (all with PH)	None	None	Adults with Group 1 PH; general anesthesia (79%); intermediate- /high-risk surgery (86%) Adults with	Cardiac, obstetric surgery	None	1) pts who died and 2) pts who had morbid event vs. those who did not	Death in 18%	Ν/Α 	Morbidity in 19%	N/A	Retrospective, single center, no comparison group
Lai HC, et al.,	Determine	Retrospective	124 (62	None	Controls	Adults with	Cardiac,	None	1) pts who	Death in 10% vs.	N/A	Morbidity in	Independent	Retrospecti

2007 (26) <u>17576968</u>	predictors of poor outcome after noncardiac surgery in pts with PH	case control study, single center	PH and 62 non–PH controls)		matched for age, sex, anesthesia, LVEF, surgical risk, and urgency	Group 1, 2, 3, or 4 PH; general anesthesia (58%); intermediate- /high-risk surgery (65%)	obstetric surgery		died and 2) pts who had morbid event vs. those who did not	0% in controls		24% vs. 3% in controls	multivariate predictors of postop mortality: emergency surgery (OR: 45; CI: 1.5–1,315; p=0.03); CAD (OR: 9.9; CI: 1.1– 91; p=0.04); PASP (OR: 1.1; CI: 1.0–1.2; p=0.03). Independent multivariate predictors of postop morbidity: Cardiac risk level (OR: 6.8; CI: 1.2– 39; p=0.03); CAD (OR: 6.5; CI: 1.4– 30; p=0.02).	single center
Kaw R, et al., 2011 (32, 33) <u>21195595</u>	Determine association of PH with periop outcomes	Retrospective cohort study, single center	173 (96 PH and 77 non–PH controls)	None	Controls who underwent RHC but had normal PA pressures, otherwise unmatched	Adults with Group 1,2,3, or 4 PH; general anesthesia (100%); intermediate- /high-risk surgery (100%); RHC	Minor procedures, cardiac, obstetric surgery	None	1) pts who died and 2) pts who had morbid event vs. those who did not	Morbidity/mortality (HF, respiratory failure, sepsis, MI) in 26% vs. 3% in controls	N/A	N/A	Mortality/morbidity OR: 13.1 (p<0.0001). Independent multivariate predictors of postop morbidity: PH (OR: 15.2; p=0.001); CKD (OR: 3.2; p=0.03); age (OR: 1.04; p=0.09); ASA Class >2 (OR: 4.2; p=0.02); surgical risk class	Retrospective, single center
Price LC, et al., 2010 (34) <u>19897552</u>	Discuss the anesthetic management and follow-up of well- characterized pts with PAH presenting for noncardiothoracic nonobstetric	N/A	28 (all with PH)	None	None	Adults with Group 1 or 4 PH; general anesthesia (50%); intermediate- /high-risk surgery (75%)	Cardiac, obstetric surgery	None	1) pts who died and 2) pts who had morbid event vs. those who did not	Death in 7%	N/A	Morbidity (HF, respiratory failure) in 29%	Periop complications more likely in FC 3–4 (p=0.14) and with lower 6-min walk distance (p=0.06)	Retrospective, single center, no comparison group

	surgery													
Meyer S, et al., 2013 (35) <u>23143546</u>	Assess periop outcomes in pts with PAH undergoing noncardiac surgery	Prospective, multicenter registry	114 (all with PH)	None	None	Adults with Group 1 PH; general anesthesia (82%)	Minor, cardiac or obstetric surgery	None	1) pts who died and 2) pts who had morbid event vs. those who did not	Death in 3.5%	N/A	Morbidity in 6.1%	Predictors of postop events: emergency surgery (OR: 2.4; 95% CI: 1.4–3.6; p=0.01); use of vasopressors (OR: 1.5; 95% CI: 1.2–2.7; p=0.03); surgery	No comparison group
													center (OR: 0.2; Cl: 0.05–1.0; p=0.06); mRA pressure (OR:	
													1.1; 95% CI: 1.0– 1.3; p=0.01)	

ASA indicates American Society of Anesthesiologists; BP, blood pressure; CAD, coronary artery disease; CI, confidence interval; CKD, chronic kidney disease; ECG, electrocardiogram; FC, functional class; HF, heart failure; HR, hazard ratio; Hx, history; iNO, inhaled nitric oxide; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; mRA, mean right atrial; OR, odds ratio; PA, pulmonary artery; PAH, pulmonary arterial hypertension; PASP, pulmonary artery systolic pressure; PE, pulmonary embolism; periop, perioperative; PH, pulmonary hypertension; postop, postoperative; pts, patients; RAD, right-axis deviation; RHC, right heart catheterization; RR, relative risk; RVH, right ventricular hypertrophy; and RVSP, right ventricular systolic pressure.

Data Supplement 7. Multivariate Risk Indices (Section 3.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient	Population	Study Intervention	Study Comparator	Er	ndpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
McFalls EO, et al., 2004 (36) <u>15625331</u>	Compare rates of morbidity and mortality with/without coronary artery revascularization before cardiovascular operations	RCT, multicenter	510	258	252	Elective vascular procedure, increased risk of cardiac complications, ≥1 major coronary arteries with >70% stenosis	Urgent or emergent vascular procedure, severe coexisting illness, prior revascularization without evidence of recurrent ischemia	CABG or coronary angioplasty	No coronary revascularization	Long-term mortality	N/A	Periop MI: 7.1% in intervention group vs. 5.0% in control group	NS	Only looked at rate of periop MI in vascular surgery pts
Davenport	Compare	Retrospective	427	99	328	ACS NSQIP	Pts who died	EVAR	Open AAA repair	Mortality: 22.2%	None	Cardiac	p=0.003	Retrospective

DL, et al., 2010 (37) <u>19939609</u>	outcomes of open vs. endovascular repair of ruptured AAA	cohort study using prospectively collected national database NSQIP				database from 2005–2007 at 173 hospitals. Pts were selected who had ruptured AAA	before having operation			EVAR vs. 37.2% open		arrest or infarction: 4.0% in EVAR vs. 8.2% in open	for mortality; p=0.159 for cardiac arrest or infarction	and not randomized.
Jordan SW, et al., 2013 (38) <u>23249982</u>	Comparing outcomes of plastic surgery operations with and without resident involvement	Retrospective cohort study using prospectively collected national database NSQIP	10,356	4,453	5,903	ACS NSQIP database from 2006–2010 with "plastics" listed as primary service to include pts with reconstructive procedures	Cosmetic procedures	Resident involvement	No resident involvement	Overall complication, wound infection, graft/prosthesis/flap failure, mortality rates	N/A	Cardiac arrest: 0.13% with resident; 0.14% no resident: MI: 0.11% with resident; 0.08% no resident	NS	Retrospective and not randomized.

AAA indicates abdominal aortic aneurysm; ACS NSQIP, American College of Surgeons National Surgical Quality Improvement Program; CI, confidence interval; EVAR, endovascular aneurysm repair; CABG, coronary artery bypass graft; HR, hazard ratio; MI, myocardial infarction; N/A, not applicable; NS, nonsignificant; OR, odds ratio; periop, perioperative; pts, patients; RCT, randomized controlled trial, and RR, relative risk.

Data Supplement 8. Exercise Capacity and Functional Capacity (Section 4.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Patient F	Population	Study Intervention	Endpoints	P Values, OR: HR: RR & 95% Cl:	Study Limitations & Adverse Events
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint (Efficacy) and Results		
Leung JM, et al., 2001 (39) <u>11555070</u>	To determine prevalence and predictors of adverse postop outcomes in older surgical pts undergoing noncardiac surgery	Prospective cohort	544	Pts ≥70 y of age undergoing noncardiac surgery at an academic medical center	Local anesthesia or MAC	N/A	3.7% of pts died and 21% experienced postop complications. Decreased functional status preop was an important predictor of adverse neurological outcomes (OR: 3)	OR: 3 (95% CI: 1.4–6.4) for adverse neurological outcome	N/A
Reilly DF, et al., 1999 (40) <u>10527296</u>	To determine the relationship between self-reported exercise tolerance and serious periop complications	Cohort	600	Consecutive outpts referred to a medical consultation clinic at a tertiary care medical center	N/A	Pts were asked to estimate the number of blocks they could walk and stairs they could climb without symptoms	All pts were monitored for 26 serious periop complications. Pts with poor exercise tolerance (<4 blocks or <2 flights) had more complications (20.4% vs. 10.4%).	Likelihood of serious complications was inversely related to the number of blocks that could be walked (p=0.006) or flights of stairs climbed (p=0.01).	N/A
Older P, et al., 1999 (41) <u>10453862</u>	To develop an integrated strategy for the identification and subsequent management	Cohort	548	>60 y of age (or younger with known cardiopulmonary disease) scheduled for	N/A	All pts underwent cardiopulmonary exercise testing. Anaerobic threshold results and hemic ECG	Mortality was 3.9%. There were no deaths in those assigned to a ward strategy based on their cardiopulmonary parameters.	N/A	N/A

	of high-risk pts in order to reduce both morbidity and mortality			major intra-abdominal surgery		changes with exercise were used to triage to ICU, HCU, and ward.			
Wiklund RA, et al., 2001 (42) <u>11393264</u>	To evaluate METs as a predictor of cardiac complications following elective noncardiac surgery	Retrospective cohort	5,939	Pts undergoing preanesthetic assessment within 2 mo of elective noncardiac surgery	N/A	N/A	94 pts (1.6%) had cardiac complications, 38% occurred after vascular surgery. Age and ASA Physical Status Class were independent predictors of complications but METs were not once ASA Physical Status Class was included.	N/A	ASA Physical Status Class and METs were colinear
Crawford RS, et al., 2010 (43) <u>20141958</u>	To relate preop functional status to periop morbidity and mortality	Cohort	5,639	Vascular surgery pts undergoing infrainguinal surgical bypass	N/A	N/A	Dependent pts (18.4%) were older and had more diabetes mellitus, COPD ESRD on dialysis, and critical limb ischemia. Dependent pts had higher mortality (6.1% vs. 1.5%) and complication rates (30.3% vs. 14.2%). Dependent status was an independent predictor of death and major complications.	Serious complications OR: 2 (95% CI: 1.7–2.4) and death OR: 2.3 (95% CI: 1.6–3.4)	N/A
Goswami S, et al., 2012 (44) <u>23042223</u>	To determine incidence and risk factors for intraoperative cardiac arrest	Cohort	362, 767	Noncardiac surgeries in the ACS NSQIP database	N/A	N/A	Incidence of intraoperative CA was 7.22 per 10,000. Predictors included being functionally dependent (OR: 2.3) as well as emergency surgery and the amount of transfusions needed.	Adjusted OR:2.33 (95% CI: 1.69–3.22) for being functionally dependent	Definition of dependent in NSQIP database based on need for assistance with ADLs rather than METs values.
Tsiouris A, et al., 2012 (45) <u>22484381</u>	To assess the effect of functional status on morbidity or mortality	Cohort	6,373	Thoracic surgery pts in 2005-2009 NSQIP database	N/A	N/A	812 pts had dependent functional status preoperatively. Mortality was 7.7 times higher in them than in those with nondependent functional status. Complications were also increased.	OR: 7.7 for mortality in dependent pts preop as compared with nondependent pts (p<0.001). OR: 9.3 for prolonged ventilation and OR: 3.1 for reintubation.	N/A

ACS indicates American College of Surgeons; ADLs, activities of daily living; ASA, American Society of Anesthesiologists; CA, cardiac arrest; CI, confidence interval; COPD, chronic obstructive pulmonary disease; ECG, electrocardiogram; ESRD, end-stage renal disease; HCU, high care unit; HR, hazard ratio; ICU, intensive care unit; MAC, monitored anesthesia care; METs, metabolic equivalent; N/A, nonapplicable; NSQIP; National Surgical Quality Improvement Program; OR, odds ratio; periop, perioperative; postop, postoperative, preop, preoperative; pts, patients; and RR, relative risk.

Data Supplement 9. The 12-Lead ECG (Section 5.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient P	opulation	Study Intervention	Study Comparator	Endpo	bints	P Values, OR: HR: RR & 95% Cl:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Secondary Endpoint and Results		
Biteker M, et al., 2012 (27) <u>22057953</u>	To examine the association of preop ECG abnormalities and periop cardiovascular outcomes in pts undergoing noncardiac, nonvascular surgery	Prospective observational single-center cohort	660	N/A	N/A	Pts >18 y of age undergoing nonday case open surgery	Emergent cases and day-case surgery, ASA5	None	None	PCE 12.1%— Only QTc predicted periop CV events on MVA	Other ECG abnormalities did not predict CV events	N/A	Small sample size
Carliner NH, et al., 1986 (46) <u>3719447</u>	To determine which ECG abnormalities were most predictive of high- risk surgical pts	Prospective observational single-center cohort	198	N/A	N/A	Pts >40 y of age undergoing elective thoracic, abdominal, or vascular surgery under GA	Recent MI, UA, CHF, AS, high- grade VE, uncontrolled HTN	None	None	Death/MI (3%)— Not reported due to small number of endpoints	All cardiac events including ischemia (17%)—Only abnormal ECG predicted	Sensitivity 85%, specificity 41%, PPV 22%; p<0.01	Small sample size, few primary hard endpoints. Individual ECG abnormalities did not predict events.
Gold BS, et al., 1992 (47) <u>1739358</u>	To determine the value of preop ECG in an ambulatory surgical population	Retrospective single-center cohort	751	N/A	N/A	All ambulatory surgical pts with preop ECG undergoing surgery	Local anesthesia only	None	None	Any adverse CV event (1.6%)— no ECG abnormality predictive	N/A	No ECG abnormality predicted adverse CV events	Small sample size, few CV events (12/751= 1.6%)
Goldman L, et al., 1977 (16) <u>904659</u>	To develop multifactorial risk score for cardiac events after noncardiac surgery	Prospective observational single-center cohort	1,001	N/A	N/A	All pts >40 y of age undergoing general, orthopedic, or urologic surgery at MGH over 7- mo period	Cardiac or thoracic surgery, local anesthesia only, endoscopy, TURP, no consent	None	None	Cardiac death (1.9%) or MACE (MI, pulmonary edema, VT– 3.9%)-Rhythm other than sinus or PACs predicted cardiac death	N/A	Death—OR: 9 (p<0.001); nonfatal MACE—OR: 3.3 (p<0.001)	No validation cohort, older study, ECGs abnormalities not well- classified

										and MACE			
Jeger RV, et al., 2006 (48) <u>16442922</u>	To determine whether preop ECG abnormalities predict death/MACE 2 y postop in pts with CAD or high CAD risk	Prospective observational single-center cohort	172	N/A	N/A	Clinically stable adult pts with documented or suspected CAD undergoing noncardiac surgery	None stated	None	None	Death (23%) or MACE (18%) at 2 y-ST depressions and faster HR predicted mortality	N/A	ST depression— OR: 4.5 (95% CI: 1.9–10.5); faster heart rate–OR: 1.6 (95% CI: 1.1– 2.4)	Small sample size
Landesberg G, et al.,1997 (49) <u>9357456</u>	To examine the association between preop ECG abnormalities, periop MI, and postop cardiac complications	Prospective observational 2-center cohort	405	N/A	N/A	Adult pts undergoing vascular surgery under GA or epidural	LBBB, LVH with strain	None	None	Cardiac death (0.5%) or MI (4.2%)—Only LVH and ST depression >0.5 mm predicted endpoint	N/A	OR: 5.8 (p=0.004)	Small sample size, limited to vascular surgery
Lee TH, et al., 1999 (15, 18) <u>10477528</u>	To derive and validate a simple index for the prediction of the risk of cardiac complications in major elective noncardiac surgery	Prospective observational single-center cohort	4,315	N/A	N/A	Pts ≥50 undergoing nonemergent noncardiac procedures with expected LOS ≥2 d	Pt unwilling to consent to full study protocol	None	None	Major cardiac complications- MI, pulmonary edema, VF/SCA, complete AV block (2%)— Pathologic Q- waves (present in 17%) predictive in derivation set, but not ST-T changes	N/A	Pathologic Q- waves: RR: 2.4 (CI: 1.3–4.2; p<0.05)	Pt consent required, and pts who did not give consent had much higher event rate (4.8% vs. 1.7%)
Liu LL., et al., 2002 (50) <u>12133011</u>	To determine whether abnormalities on preop ECGs were predictive of postop cardiac complications	Prospective observational single-center cohort	513	N/A	N/A	Pts ≥70 undergoing noncardiac surgery	Local anesthesia or MAC	None	None	Death (3.7%) and combined cardiac complications (MI, ischemia, arrhythmia, CHF: 10.1%)– No association between ECG abnormalities and postop cardiac	Other noncardiac adverse events	OR: 0.63 (95% CI: 0.28–1.40; p=0.26)	Small sample size, only age ≥70

										complications			
Payne CJ, et al., 2011 (51) <u>21989644</u>	To assess the predictive value of a preop 12- lead ECG in pts undergoing major surgery in a population with a high prevalence of cardiovascular disease	Prospective observational single-center cohort	345	N/A	N/A	Consecutive adult pts undergoing major vascular surgery or laparotomy	None stated	None	None	MACE (MI and cardiac death:13.3%) and all-cause mortality (7.8%) within 6 wk—LV strain and prolonged QTc predictive of MACE on MVA	N/A	LV strain—HR: 3.93 (Cl: 2.14– 7.20; p<0.001); Prolonged QTc—HR: 2.38 (Cl: 1.32– 4.31; p=0.004)	Small sample size; other ECG abnormalities not predictive on MVA
Schein OD, et al., 2000 (52) <u>10639542</u>	To determine whether routine testing helps reduce the incidence of intraop and postop medical complications	Prospective randomized multicenter controlled trial	18,189	9,411	9,408	Pts ≥50 scheduled to undergo cataract surgery	General anesthesia, MI within 3 mo, any preop testing within 28 d	Routine preop testing=12-lead ECG, CBC, SMA-7	No preop testing	Adverse medical events (3.1%)— No difference between groups	Individual cardiac endpoints	RR: 1.00 (CI: 0.9–1.2)	Limited to single type of low-risk surgery, cardiac events not specifically studied, unable to exclude testing done >28 d
Seymour DG, et al., 1983 (53) <u>6869118</u>	To examine the role of the routine preop ECG in the elderly surgical pt	Prospective observational single-center cohort	222	N/A	N/A	Pts ≥65 undergoing general surgery	None stated	None	None	MI or CHF (12.2%–9.6% in men and 16.1% in women)–– Major ECG abnormalities (LVH, Q-waves, ST depression, T-wave abnormalities) predicted events in women but not men	N/A	Women: X ² =4.0 (p<0.05); Men: X ² =0.17 (p=NS)	Small sample size, unusual statistical analysis, included emergency cases (24.3%)
Turnbull JM, et al., 1987 (54) <u>3592875</u>	To investigate the value of traditionally accepted preop investigations in otherwise healthy pts admitted to hospital for open	Retrospective 2-center cohort	1,010	N/A	N/A	Adult pts admitted for cholecystectomy and no major medical conditions	Active or ongoing disease on admission, morbid obesity	None	None	Any adverse medical event— ECG not predictive	N/A	PPV=0.040 (p=NS)	Retrospective, ECG criteria not well- defined, statistical comparisons not rigorous

	cholecystectomy												
Van Klei WA, et al., 2007 (55) <u>17667491</u>	To estimate the value of a preop ECG in addition to pt Hx in the prediction of MI and death during postop stay	Retrospective analysis of a prospective 2- center cohort study	2,967	N/A	N/A	Pts ≥50 undergoing noncardiac surgery with expected length of stay >24 h	Lung or liver transplant operation	None	None	Postop MI (2.3%) or death (2.5%)—RBBB predictive of postop MI, LBBB predictive of postop MI and death, other ECG abnormalities not predictive	N/A	RBBB/postop MIOR: 2.1 (CI: 1.0-4.5; p=0.06); LBBB/postop MIOR: 3.1 (CI: 1.0-9.9; p=0.05); LBBB/death OR: 3.5 (CI: 1.3-10; p=0.02)	Retrospective, 20% did not get ECG. In ROC analysis, BBB not additive to risk prediction

AS indicates aortic stenosis; ASA, American Society of Anesthesiologists; AV, atrioventricular; BBB, bundle branch block; CAD, coronary artery disease; CBC, complete blood count; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; ECG, electrocardiogram; GA, general anesthesia; HR, hazard ratio; HTN, hypertension; LBBB, left bundle-branch block; LOS, length of stay; LV, left ventricular; LVH, left ventricular hypertrophy; MACE, major adverse cardiac event; MGH, Massachusetts General Hospital; MI, myocardial infarction; MAC, monitored anesthesia care; MVA, multivariable analysis; N/A, not applicable; NS, nonsignificant; OR, odds ratio; PAC, pulmonary artery catheterization; PCE, perioperative cardiovascular event; periop, perioperative; postop, postoperative; PPV, positive predictive value; preop, preoperative; pts, patients; QTc, corrected QT interval; ROC, receiver operating characteristic; RBBB, right bundle-branch block; RR, relative risk; SCA, sudden cardiac arrest; SMA, sequential multiple analysis; TURP, transurethral resection of the prostate; UA, unstable angina; VE, ventricular ectopy; VF, ventricular fabrillation; and VT, ventricular tachycardia.

Data Supplement 10. Assessment of LV Function (Section 5.2)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Po	pulation	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% Cl:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Baron JF, et al., 1994 (56) <u>8107716</u>	Ability of LVEF (and ischemia by dipyridamole thallium stress) by MUGA to predict periop MACE	Prospective	457	None	N/A	LVEF by MUGA undergoing elective abdominal aortic surgery	N/A	None	Pts with reduced LVEF vs. preserved LVEF	An LVEF <50% predicted cardiac complications (OR 2.1; 95% CI: 1.2–3.7)	N/A	EF<50% associated with postop HF (OR 4.6; 95% Cl: 1.8– 11.8) but not death (OR 1.3; 95% Cl: 0.4–4.1), MI (OR 1.5; 95% Cl: 0.5– 4.4).Sensitivity of low EF to detech HF 25%; specificity 86%	N/A	N/A
Kontos MC, et al., 1996	Ability of LVEF by TTE to predict	Prospective	96 procedures in 87 pts	None	N/A	LVEF by TTE undergoing moderate- or	N/A	None	Pts with reduced LVEF (or	Major cardiac complications (MI, HF, arrhythmia) occurred	N/A	N/A	Sensitivity of low LVEF by ECG to predict MACE	N/A

(57) <u>8800025</u>	periop MACE and compare to dypramidole thallium stress		(56 vascular, 40 general)			high-risk noncardiac surgery			ischemia on thallium stress) vs. preserved LVEF	in 10 pts. Reduced LVEF preoperatively present in 29%.			86% (95% CI: 60%–96%) and specificity 81% (95% CI: 70%– 88%). LVEF by echo more specific than dipyridamole thallium stress for prediction of events.	
Halm EA, et al., 1996 (58) <u>8779454</u>	Ability of LVEF by TTE to predict periop MACE	Prospective	339	N/A	N/A	Known or suspected CAD, major noncardiac surgery	N/A	N/A	N/A	Postop IEs (cardiac- related death, nonfatal MI, and UA), CHF, and VT. 10 pts (3%) had IEs; 26 (8%) had CHF; and 29 (8%) had VT. In univariate analyses, an EF<40% was associated with all cardiac outcomes combined (OR: 3.5; 95% CI: 1.8–6.7), CHF (OR: 3.0; CI: 1.2–7.4), and VT (OR: 2.6; CI: 1.1–6.2). In multivariable analyses that adjusted for known clinical risk factors, an EF<40% was a significant predictor of all outcomes combined (OR: 2.5; CI: 1.2–5.0) but not CHF (OR: 2.1; CI: 0.7–6.0) or VT [corrected] (OR: 1.8; CI: 0.7–4.7).	N/A	An EF <40% had a sensitivity of 28%-31% and a specificity of 87%- 89% for all categories of adverse outcomes.	N/A	N/A
Rohde LE, et al., 2001 (59) <u>11230829</u>	Ability of LVEF by TTE to predict periop MACE	Prospective	570	None	N/A	LVEF by TTE undergoing major noncardiac surgery	N/A	None	Pts with reduced LVEF vs. preserved LVEF	Preop systolic dysfunction was associated with postop MI, cardiogenic pulmonary edema (and major cardiac	N/A	ECG data added significant information for pts at increased risk for cardiac complications by clinical criteria,	With low LVEF: MI (OR: 2.8; 95% CI: 1.1–7.0), cardiogenic pulmonary edema (OR: 3.2; 95% CI: 1.4–7.0),	N/A

										complications		but not in otherwise low-risk pts	and major cardiac complications (OR: 2.4; 95% Cl: 1.3–4.5).	
Healy KO, et al., 2010 (3) <u>20412467</u>	Determine the impact of LVEF on outcome in pts with HF undergoing noncardiac surgery	Retrospective	174	N/A	N/A	LVEF assessment in pts with HF undergoing intermediate or high risk noncardiac surgery.	N/A	N/A	N/A	Mortality	MACE in 53 (31%), including 14 (8%) deaths within 30 d, 26 (14.9%) MI, and 44 (25.3%) HF exacerbations	Among the factors associated with adverse periop outcomes in the first 30 d were advanced age (e.g., >80 y), diabetes and a severely decreased EF (e.g., <30%)	Long-term mortality was high and Cox proportional hazards analysis demonstrated that EF was an independent risk factor for long term mortality	N/A

CAD indicates coronary artery disease; CHF, congestive heart failure; CI, confidence interval; ECG, echocardiogram; EF, ejection fraction; HF, heart failure; HR, hazard ratio; IE, ischemic event; LV, left ventricular; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac event; MI, myocardial infarction; MUGA, Multigated Acquisition Scan; N/A, not applicable; NS, nonsignificant; OR, odds ratio; periop, perioperative; postop, postoperative; preop, preoperative; pts; patients; RR, relative risk; TTE, transthoracic echocardiogram; UA, unstable angina; and VT, ventricular tachycardia.

Data Supplement 11. Exercise Stress Testing for Myocardial Ischemia and Functional Capacity (Section 5.3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient	Population	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Cutler BS, et al., 1981 (60) <u>7223937</u>	Report of continuing experience with the electrocardiogra phically monitored arterial stress test in pts with peripheral vascular disease	Observational	130	N/A	N/A	Pts undergoing peripheral vascular reconstructive surgery	N/A	N/A	N/A	Lowest risk group was pts who achieved 75% maximum predicted heart rate without MI and no cardiac complications. Highest risk group was 26 pts who had an ischemic response at <75% maximum predicted heart	None	None	N/A	No stats. Event rates we don't see today.

										rate, 10 cardiac				
										complications				
										including 7 MIs (5				
										of which were				
										fatal).				
Gerson	To test whether	Consecutive	Preliminary	N/A	N/A	Pts aged ≥65	N/A	N/A	N/A	Preliminary study:	None	None	Preliminary	Small
MC, et al.,	objective	series	study: 100			y scheduled				13 pts (of 100) had			study: Pts	sample size.
1985	assessment of		(50 men and			for major				a total of 22 major			unable to bicycle	
(61)	rest and		50 women);			elective				periop			at least 2 min to	
<u>4062085</u>	exercise LV		prospective			abdominal or				complications			a heart rate >99	
	function before		study: 54 pts			noncardiac				(cardiac death, VT			bpm had an 11-	
	elective		(25 men and			thoracic				or VF, MI, CHF)			fold increase in	
	noncardiac		29 women)			surgery				including 6 deaths.			the risk of	
	surgery is a									When radionuclide			developing a	
	more sensitive									variables and			periop cardiac	
	predictor of									clinical variables			complication.	
	periop cardiac									were entered into			Prospective	
	complications									multivariate			study: 10 pts	
	than data from									analysis that			(out of 54) had a	
	pt Hx, physical									included preop Hx,			total of 12 periop	
	exam, X-ray, lab									physical			complications	
	ECG, and									examination, and			including 2	
	stress-rest									x-ray, ECG, and			deaths. The	
	radionuclide									chemical			inability to	
	ventriculography									laboratory			bicycle 2 min to	
										variables,			a heart rate >99	
										individually and in			bpm was the	
										combination, only			only significant	
										resting			predictor of a	
										radionuclide LV			periop cardiac	
										regional wall			complication	
										motion abnormality			(p<0.05).	
										(p=0.002) and			Inability to	
										inability to exercise			exercise had a	
										for 2 min to raise			sensitivity of	
										the heart rate			80% and	
										above 99 bpm			specificity of	
										(p=0.006) were			53% for	
										independent			prediction of	
										predictors of			periop cardiac	
	— 14 ·			405 4 111	07.4					periop cardiac risk.			complications.	
Arous EJ,	I o determine	Retrospective	Out of 808	135 pts with	37 pts with	Pts with AAA	None mentioned	Ireadmill	Pts with no	Positive exercise	None	None	In the positive	High rate of
et al.,	the satest	analysis	pts with AAA	ischemia on	no Hx of MI	or peripheral		exercise	Hx of MI or	test (135): Group 1			stress test	events
1984	treatment option		or peripheral	stress test:	or symptoms	occlusive		(Bruce	symptoms of	(56) standard			group, the total	compared
(62)	for the pt with		occlusive	Group 1 (56	of CAD with	disease of the		protocol) to	CAD with	operation: MI in 15			incidence of MI,	with today's

0010100								() () = = 0 (
<u>6610402</u>	combined		disease of	pts)	normal	lower		at least 75%	normal	(27%), fatal in 11;			including both	standards.
	coronary and		the lower	standard	ECGs at	extremities		max	ECGs at rest	Group 2 (23) extra-			the postop and	Decision on
	PVD through a		extremities	operation,	rest: Group			predicted		anatomic bypass:			follow-up	type of
	retrospective		who	Group 2 (23	1 (21),			heart rate;		4 MI (17%), 3 fatal;			periods, was	surgery
	analysis of the		underwent	pts) extra-	Group 2 (2).			arm		Group 3 (10)			significantly	influenced by
	poston course of		FCG	anatomic	Group 3 (4)			ergometer		CABG and			reduced when	stress test
	nts with an		monitored	hypass	and Group 4			for those		standard			Group 3 was	results Arm
	jeohomio		ctrocc tocto	Group 3 (10)	(10)			whose		operation: 0 MI:			compared with	orgomotry
			stiess tests,	Gloup 3 (10	(10)			whose		operation. 0 IVII,				ergometry
	response to		this study	pts) CABG				claudication		and Group 4 (46)			Group T	used for
	treadmill		concerns	and				preciuded		no operation: 10			(p=0.05).	some pts,
	exercise		135 with an	standard				adequate		(22%) late fatal MI				but how
			ischemic	operation,				treadmill		(1–5 y). No known				many is
			response to	and Group 4				exercise.		CAD: Group 1 (21)				unclear. Not
			exercise and	(46 pts) no				Ischemia		5 MI (24%), 4 fatal;				really a study
			37 pts with	operation				defined as		Group 2 (2) 1				of ischemia
			no Hx of MI					new or		nonfatal MI (50%):				vs. no
			or symptoms					additional		Group 3 (4) 0 MI				ischemia on
			of CAD with					ST segment		and Group 4 (10) 1				stress test
			normal					depression		late fatal MI (10%)				01/000/001.
								of at least 1						
			ECGS at lest											
0 "						5/ /0	D	mm.				a 100 - 110	.	
Carliner	I o determine if	Prospective	200	N/A	N/A	Pts over 40 y	Documented MI	Ireadmill	N/A	2 pts with markedly	None	On multivariate	Postop death,	Small
NH, et al.,	preop exercise					of age	within 6 mo, UA,	(134),		positive stress		analysis, the	MI, and	number of
1985	testing would be					scheduled to	decompensated	bicycle (21),		tests were		preop ECG	suspected	primary
(63)	useful for					undergo	HF,	arm		excluded from		was the only	myocardial	events limits
<u>4014040</u>	predicting risk in					elective major	hemodynamically	ergometer		further analysis. 6		factor that was	ischemia/injury	analysis. Mix
	pts undergoing a					noncardiac	significant AS,	(43).		pts (3%) had a		a statistically	occurred more	of treadmill
	wide variety of					surgery under	low-grade 4A and	Treadmill		primary endpoint		significant	frequently in pts	(67.7%), bike
	maior surgical					general	4B ventricular	was		(death or MI). Only		predictor of	who had an	(10.6%), and
	procedures0107					anesthesia	arrhythmias at	modified		1 of these 6 nts		poston	abnormal	arm (21.7%)
	8					anostrosia.	rest uncontrolled	Balke or		had a positive ST		outcome Ant	electrocardiogra	
	0							Daike Of				with an		exercise.
							HIN, physical	noailiea		segment response			phic response to	
							disability and	Bruce		to exercise, 5 of		abnormal ECG	exercise and/or	
							mental	protocol.		the 6 pts had a		was 3.2 times	an exercise	
							incompetence			maximal exercise		more likely to	capacity of <5	
										capacity of <5		die	METs than in	
										METs.		postoperatively	pts with neither	
												or MI or	of these	
												suspected	findings;	
												mvocardial	however, none	
1												ischemia/iniury	of the exercise	
												than was a nt	variables was	
												with a normal	statistically	
													significant	
												EUG.	significant as an	
1	1	1	1	1	1		1	1	1			1	indonondont	1

													predictor of risk.	
Leppo J, et al., 1987 (64) <u>3805515</u>	It was hypothesized that the presence of thallium redistribution would be of prime importance in detecting those pts having coronary disease who have potentially jeopardized myocardium	Prospective	100 underwent dipyridamole thallium scintigraphy; 69 underwent exercise testing (56, Bruce protocol), 13 arm ergometry). 27 didn't undergo exercise because of physical limitations and 4 because of scheduling conflicts.	N/A	N/A	Consecutive pts admitted for elective aortic or limb vascular surgery.	New or medically UA, recent (4-6 mo) MI.	N/A	N/A	Of the 89 pts who underwent vascular surgery without cardiac catheterization, 15 had a periop MI (1 fatal and 10 non-Q wave infarctions). Only the presence of either an abnormal scan (p=0.001) or thallium redistribution (p=0.001) demonstrated a significant difference.	None	Although pts with ST depression and shorter total exercise time tended to have more events, these differences were not statistically significant. No events occurred in the 12 pts who were able to perform >9 min of exercise.	predictor of risk. From the regression analysis, the predicted probability of a cardiac event in pts not having redistribution was 2±2% (1 of 47), but in pts with redistribution it was 33±7% (14 of 42) .In the second regression analysis which included the 60 pts having both exercise and scan studies, only the presence of thallium redistribution was significant at stop 0	Relatively small number of patients undergoing exercise (69, and 13 of these were arm ergometry). High event rates not seen today.
McPhail N, et al., 1988 (65) <u>3336127</u>	To report on their experience with the use of exercise testing in an effort to predict cardiac complications in pts requiring arterial repair	Observational	110, 9 excluded. Treadmill exercise in 61 pts (Bruce protocol) and arm ergometry in 40 pts.	N/A	N/A	Consecutive pts requiring arterial surgery who had clinical evidence of significant CAD were referred for cardiac evaluation	9 pts with recent MI (<6 mo), UA, or CHF were excluded	N/A	N/A	Contingency table analysis showed that maximum heart rate achieved during exercise was a significant predictor of complications (MI, CHF, malignant ventricular arrhythmias and cardiac death). Of 70 pts who achieved <85% of their predicted maximum heart	None	Of 21 pts with a positive stress test (≥1 mm ST depression) who attained <85% of their predicted maximum heart rate, 7 (33.3%) developed cardiac complications. In contrast, no complications occurred among 9 pts	The logistic regression analysis indicates that pts who achieved a high maximal heart rate during exercise had a low probability of developing cardiac complications (p=0.040). A similar result was observed when high METs	Unclear selection of pts ("clinical evidence of significant CAD"). Relatively small number underwent treadmill exercise. High event rates not seen today.

										rate, 17 (24.3%) developed complications. Only 2 (6.6%) of 30 pts who achieved >85% maximum predicted heart rate had complications (p=0.0396). The degree of ST segment depression that occurred with exercise was NS in predicting cardiac complications.		with ST depression of ≥1 mm who were able to achieve 85% of their predicted maximum heart rate.	was present (p=0.033). Note: 4 METs ~25% event rate.	
Sgura FA, et al., 2000 (66) <u>11014727</u>	To determine the value of preop exercise testing with a supine bicycle in predicting periop cardiovascular events and long- term outcomes in pts scheduled for vascular surgery	Consecutive series	149	N/A	N/A	Underwent supine exercise testing and vascular surgery	Underwent vascular surgery or coronary revascularization before exercise testing	N/A	N/A	Cardiovascular events within 30 d of surgery: death, MI, cardiac arrest; 7% had periop cardiovascular events	None	No significant association between exercise- induced ST depression, radionuclide angiographic factors, or any clinical variable (other than age) and periop cardiovascular events or long- term mortality	The level of peak exercise achieved was associated with periop CV events with 12% occurring in low- capacity pts (<4 METs), 3% occurring in intermediate- capacity pts (4– 7 METs), and none in the high capacity pts (>7 METs) (p=0.03). Long-term survival rates were substantially less in the low- workload group than in intermediate- and high- workload groups (p=0.007).	Pts were selected who were felt to be capable of exercising. Selected group of pts for whom exercise radionuclide angiography was ordered.

AAA indicates abdominal aortic aneurysm; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CV, cardiovascular; ECG, echocardiogram; HR, hazard ratio; Hx, history; LV, left ventricular; MET; MI, myocardial infarction, N/A, not applicable; NS, nonsignificant; periop, perioperative; preop, preoperative; pts, patients; PVD, peripheral vascular disease; UA, unstable angina; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Data Supplement 12. Cardiopulmonary Exercise Testing (Section 5.4)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Population		Study Intervention	Study Comparator	Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events	
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Hartley RA, et al., 2012 (67) <u>23001820</u>	To evaluate whether preop CPET is useful in the prediction of 30- and 90-d mortality in pts undergoing elective open AAA repair and EVAR	Prospective cohort	415	N/A	N/A	Pts undergoing AAA repair and CPET	None given	N/A	N/A	On multivariable analysis, open repair, AT <10.2 mL/kg/min, anemia and inducible cardiac ischemia were associated with 30-d mortality. Anemia, inducible cardiac ischemia and peak VO2 <15 mL/kg/min were associated with 90-d mortality on multivariable analysis. Pts with ≥2 subthreshold CPET values were at increased risk of both 30- and 90-d mortality.	None	None	On multivariable analysis, open repair (OR: 4.92; 95 % CI: 1.55–17.00; p=0.008), AT below 10.2 mL/kg/min (OR: 6.35; 95 % CI: 1.84–29.80; p=0.007), anemia (OR: 3.27; 95 % CI: 1.04–10.50; p=0.041) and inducible cardiac ischemia (OR: 6.16; 95 % CI: 1.48–23.07; p=0.008) were associated with 30-d mortality. Anemia, inducible cardiac ischemia and peak VO2 <15 mL/kg/min (OR: 8.59; 95 % CI: 2.33–55.75;	Observational study, relatively small number of deaths (6 in EVAR group and 8 with open AAA repair at 30 d and 11 EVAR/8 open repair at 90 d), mix of EVAR and open repair

													p=0.005) were associated with 90-d mortality on multivariable analysis. Pts with ≥2 subthreshold CPET values were at increased risk of both 30- and 90- d mortality.	
Thompson AR, et al., 2011 (68) <u>21929919</u>	To assess the usefulness of CPET and the Detsky score to predict midterm mortality in AAA pts assessed for open repair. Secondary aim to compare ability of CPET and other scores to predict 30-d periop mortality.	Prospective cohort	102	66 (deemed "fit" by CPET variables, comorbidities, and size of AAA)	36 (deemed "unfit" by CPET variables, comorbidities, and size of AAA)	Consecutive pts undergoing AAA repair	None given	N/A	N/A	Midterm (30- mo) survival was predicted by the anaerobic threshold (p=0.02).	None	None of the scoring tools were able to predict 30- d major morbidity or mortality as defined by periop complications (p>0.05)	Midterm (30-mo) survival was predicted by the anaerobic threshold (p=0.02)	Lack of detail on cause of death, relatively small numbers total, and deaths (1 30- day death), not clear what "cardiac events" were
Prentis JM, et al., 2012 (69) <u>22858436</u>	To assess the use of CPET to predict morbidity in unselected pts scheduled for elective EVAR or open AAA repair	Observational	185 pts (101 EVAR and 84 open repair)	N/A	N/A	"Unselected" pts undergoing EVAR or open AAA repair at a single center	AT not confidently determined from CPET data	N/A	N/A	Open repair: AT was a significant independent predictor of postop complications and hospital LOS. EVAR: No independent variables were significantly predictive of major postop complications on univariate analysis. No multivariate	None	Open repair: The in-hospital mortality rate was 5 of 84 (5.9%). 3 of 27 pts (11.1%) were in the unfit group (AT<10) compared with 2 of 58 (3.4%) in the fit group (AT>10), both of whom had an AT <12 mL/min/kg. Open repair: Cardiac complications (MI, LV failure, major arrhythmias) 18.5% unfit vs. 3.5% fit, p=0.03.	Open repair: ROC curve analysis showed that 10.0 mL/min/kg was the optimal AT level to predict those at risk for increased rates of postop complications. This was sensitive (70%) and specific (86%), with good accuracy (area under the curve, 0.75; 95% Cl: 0.63–	Single center. Not consecutive pts although "unselected." No mortality data.

										analysis was performed.			0.83; p=0.001).	
Carlisle J, et al., 2007 (70) <u>17440956</u>	To review whether preop fitness, measured by CPET, correlated with survival following elective open AAA repair	Observational	130 (37 pts did not undergo CPET and weren't analyzed)	N/A	N/A	Pts undergoing AAA repair	Did not undergo CPET	N/A	N/A	Multivariable analyses indicated that survival, to both 30 d and for the total observation period, correlated best with VE/VCO2. The risk of death was greater with higher values of VE/VCO2. The RCRI was significantly associated with midterm survival, as was the AT, but to a lesser degree.	None	Unfit pts had an RCRI >1 and a VE/VCO2 of >42. Fit pts had an RCRI of 1 (and any VE/VCO2), or an RCRI >1 but a VE/VCO2 lower than 43. There were 30 unfit pts and 100 fit pts.	Multivariable analysis of midterm (median 35 mo) survival: VE/ VCO2 HR: 1.13 (Cl: 1.07–1.19; p<0.001); RCRI HR: 1.76 (Cl: 1.07–1.19; p=0.006); AT HR: 0.84 (Cl: 0.72–0.98; p=0.033). The 2- y survival rate was 55% for unfit pts and 97% for fit pts; the absolute difference was 42% (95% Cl: 18%–65%; p<0.001).	Single center, observational, unclear selection of CPET variable cutoffs
Older P, et al., 1993 (71) <u>8365279</u>	To compare the extent of cardiac failure classified by AT and postop mortality	Prospective cohort Prospective	187	N/A	N/A	Pts >60 y of age scheduled for major abdominal surgery ("likely to cause a significant increase in oxygen demand, e.g., AAA resection, anterior resection of the rectum")	Could not complete CPET (4 of 191 pts)	N/A	N/A	10 CV deaths in 55 pts (18%) with AT <11 mL/kg/min vs. 1 CV death in 132 pts (0.8%) with AT of \geq 11 mL/kg/min (p<0.001)	None	42% mortality in the 19 pts with an AT of <11 mL/min/kg and preop ischemia (h/o MI, angina or ischemia on CPET) vs. 4% mortality in the 25 pts with AT >11 and ischemia (p<0.01).	10 CV deaths in 55 pts (18%) with AT <11 mL/kg/min vs. 1 CV death in 132 pts (0.8%) with AT of ≥11 mL/kg/min (p<0.001)	Single center, not blinded to results (all pts with ischemic tests admitted to ICU regardless of AT)
CP, et al., 2010 (72) <u>20134313</u>	hypothesis that CPET does not improve preop assessment of pt risk of postop	single center cohort study	went on for operation and 48 did not; 7			undergo major elective surgery (AAA repairs, aortobifem grafts, liver	and elective colorectal, urological, or orthopedic operations			postop d 7		complication rate was 25% in pts with AT <10.1 mL/kg/min and 3% in those with AT	operator curve analysis showed an optimal AT threshold level of 10.1	selected nature of the chosen pt cohort. 48 pts did not undergo planned

	complications		nts did			resections						>10 1 ml /ka/min	ml /ka/min to	nrocedure No
	when compared		not			nancreatic and						(n=0.0005) Note	nredict those at	comment on
	to a		achieve			largo						POMS definition of	rick for	mortality
	auestionnaire-					retroneritoneal						CV complication:	increased rates	montainty.
	hasod		looving			intra abdominal						Diagnostic tests or	of nocton	
	Daseu		116 for									thereasy within the	or posiop	
	assessment					sarcoma						therapy within the	complications.	
	method		analysis)			surgery) and low						last 24 n for any of	This was highly	
						subjective						the following: new	sensitive (88%)	
												ivii or ischemia,	and specific	
						capacity based						nypotension	(79%) with high	
						on clinical Hx						(requiring fluid	degree of	
												therapy >200 mL/h	accuracy (area	
												or	under the curve	
												pharmacological	0.85; 95% CI:	
												therapy), atrial or	0.78–0.91;	
												ventricular	p=0.001).	
												arrhythmias,		
												pulmonary edema,		
												thrombotic event		
												(requiring		
												anticoagulation).		
Snowden	To assess the	Single center	389	N/A	N/A	All pts being	Major	N/A	N/A	Hospital	None	Critical care and	Multivariate	Limited to
CP, et al.,	relationship	prospective				considered for	surgery not			mortality		hospital LOS	regression	hepatobiliary
2013	between	cohort study				major	performed			-			identified	surgery. Single
(73)	cardiopulmonary					hepatobiliary	because of						anaerobic	center.
23665968	fitness and age					surgery (liver	extensive						threshold as the	
	upon mortality					resection,	malignancy,						most significant	
	and LOS in an					Whipple,	laparoscopic						independent	
	unselected group					retroperitoneal	rather than						predictor for	
	of pts undergoing					intra-abdominal	open						postop mortality	
	major					sarcoma	procedure						from the	
	hepatobiliary					excision)	performed,						exercise	
	surgery					,	or pts did not						variables in this	
	5,						exercise						population of	
							enough to						maior surgical	
							reach AT						pts (OR: 0.52:	
													p=0.003	
													beta = -0.657)	
													ROC analysis	
													demonstrated	
													an ontimal	
													anaerohic	
													threshold level	
													of 10 ml /min/kg	
													with good	
													with good	

													accuracy (area under curve =0.75; 95% CI: 0.65–0.85; p=0.0001).	
Wilson RJT, et al., 2010 (74) <u>20573634</u>	To evaluate whether CPET variables and clinical data from Lee's cardiac risk index are useful predictors of all cause hospital and 90-d mortality in pts undergoing nonvascular intra-abdominal surgery	Retrospective analysis of anonymized data	847	N/A	N/A	All pts aged >55 y being considered for colorectal surgery, bladder, or kidney cancer excision who performed or attempted a CPET as part of their routine preop evaluation at the Preassessment Clinic	Pts who did not proceed to planned surgery were excluded from analysis	N/A	N/A	An AT of ≤10.9 mL/kg/min, a VE/VCO2 of ≥34, and a Hx of ischemic heart disease were all associated with an increased relative risk for all-cause hospital mortality. The overall presence of any ≥1 of the Lee's cardiac risk factors was not significantly associated with an increased risk of mortality.	None	None	Nonsurvival: For AT of \leq 10.9, RR: 6.8 (95%) CI: 1.6–29.5); for VE/VCO2 of \geq 34, RR: 4.6 (95% CI: 1.4– 14.8). Survival at 90 d was significantly greater in pts with an AT of \geq 11 (p=0.034), in pts with VE/VCO2 <34 (p=0.021), and in pts without IHD (p=0.02).	Low incidence of all-cause mortality (2.1% in hospital and 4.1% at 90 d)
Older P, et al., 1999 (41) <u>10453862</u>	To test a strategy of postop triage based on CPET results	Prospective consecutive series	548 pts	153 to ICU	Pts sent to HDU (115) or ward (280)	Pts over 60 y of age scheduled for major surgery or <60 but had previous diagnosis of myocardial ischemia or cardiac failure	Pts undergoing thoracic surgery	AT <11 to ICU (28% of pts)	Pts with AT >11 with inducible ischemia or VE/VO2 >35 (21%) admitted to HDU; all others (51%) admitted to general ward	4.6% mortality in pts with AT <11	0.5% mortality in pts with AT >11	None	None given	Confounding of CPET results and postop care, but should have improved outcomes in higher risk pts. Lack of stats.
Junejo MA, et al., 2012 (75) <u>22696424</u>	To evaluate the role of CPET in periop risk assessment in pts undergoing	Single center prospective cohort study	94 with CPET and surgery; 2 could not	94 in CPET group	23 pts deemed low risk	Pts over 65 y, younger pts with comorbidity and those likely to require complex	None given	N/A	N/A	Death within 30 d of operation	None	In-hospital deaths, LOS in ICU and high dependency unit, overall hospital stay and	AT was the only preop marker associated with postop in- hospital	AT cutoff derived from high-risk group; small number of in-hospital

honatic reception	attain AT	rocoction	[[I		longer term	mortality (OD:	doothe (1.2% in
nepatic resection								
	leaving 92	underwent				survival (up to 4 y)	0.48; 95% CI:	whole group);
	tor	CPEI					0.25–0.94;	CPE1 data
	analysis						p=0.032). ROC	available to
							curve analysis	managing
							identified a cut-	clinicians:
							off at 9.9	heterogeneous
							ml l/kg/min that	aroun in terms
							provided 100%	of type of
								respection and
								resection and
							76% specificity,	tumor
							with a PPV of	histopathology
							19% (95% CI:	
							9%–38%) and a	
							NPV of 100%	
							(95% CI: 94–	
							100). Pts with	
							an AT ≥9.9	
							ml /kg/min had	
							improved long	
							torm ourvival	
							(median	
							duration 1,067	
							d) compared	
							with pts with a	
							lower value	
							(p=0.038), but	
							worse survival	
							than those low-	
							risk pts who did	
							not undergo	
							CPFT	
							(n=0.038)	
							(median duration 1,067 d) compared with pts with a lower value (p=0.038), but worse survival than those low- risk pts who did not undergo CPET (p=0.038).	

AAA indicates abdominal aortic aneurysm; AT, anaerobic threshold; CI, confidence interval; CPET, cardiopulmonary exercise stress test; EVAR, endovascular aneurysm repair; HR, hazard ratio; ICU, intensive care unit; LOS, length of stay; LV, left ventricular; MI, myocardial infarction; N/A, not applicable; NPV, net predictive value; OR, odds raio; periop, perioperative; POMS, postoperative morbidity survey; postop, postoperative; PPV, positive predictive value; preop, preoperative; RCRI, Revised Cardiac Risk Index; ROC, receiver operating characteristic; and VE/VO2, ventilatory equivalent of oxygen.

Data Supplement 13. Pharmacological Stress Testing (Section 5.5)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Patient Po	pulation	Study Intervention	Study Comparator	Endpoints			P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
					Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Beattie WS, et al., 2006 (76) <u>16368798</u>	Compare SE vs. MPI in preop evaluation prior to noncardiac surgery	Meta- analysis of 68 studies	10,049	N/A	Preop noncardiac surgery	N/A	N/A	MI and/or death	MI and/or death	LR for SE more indicative of postop cardiac event vs. TI (LR: 4.09; 95% CI: 3.21–6.56 vs. LR: 1.83; 1.59–2.10; p<0.001). This difference was attributable to fewer false negative SEs. No difference in ROC curves (SE: 0.80; 95% CI: 0.76–0.84 vs. TI: 0.75; 95% CI: 0.70–0.81).	A moderate-to-large defect, seen in 14% of pts by either method predicts a postop cardiac event (LR: 8.35; 95% CI: 5.6–12.45)	N/A	N/A

CI indicates confidence interval; LR, likelihood ratio; MI, myocardial infarction; MPI, myocardial perfusion imaging; N/A, not applicable; postop, postoperative; preop, preoperative; ROC, receiver operating characteristic; SE, stress echocardiography; and TI, thallium imaging.

Data Supplement 14. Radionuclide MPI (Section 5.5.2)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Patient Po	opulation	lschemia	Endpoints			P Values, OR: HR: RR & 95% CI:
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results	
Eagle KA, et al.,1989 (77) <u>8653858</u>	Periop risk assessment by MPI	Single center, retrospective	200	Vascular surgery	N/A	41%	Periop events: PPV: 16%; NPV: 98%	N/A	N/A	N/A
Younis LT, et al., 1990 (78) <u>2353615</u>	Periop risk assessment by MPI	Single center, retrospective	111	Peripheral vascular disease	N/A	36%	Periop events: PPV: 15%; NPV: 100%	N/A	N/A	N/A
Hendel RC, et al., 1992 (79) <u>1442573</u>	Periop risk assessment by MPI	Single center, retrospective	327	N/A	N/A	51%	Periop events: PPV: 14%; NPV: 99%	N/A	N/A	N/A
Lette J, et al., 1992 (80) <u>1598869</u>	Periop risk assessment by MPI	Single center, retrospective	355	N/A	N/A	45%	Periop events: PPV: 17%; NPV: 99%	N/A	N/A	N/A
Brown KA, et al., 1993 (81) <u>8425993</u>	Periop risk assessment by MPI	Single center, retrospective	231	N/A	N/A	33%	Periop events: PPV: 13%; NPV: 99%	N/A	N/A	N/A
--	--	---------------------------------	--------	--------------------------------	-----	-----	---------------------------------------	--	--	---
Bry JD, et al., 1994 (82) <u>8301724</u>	Periop risk assessment by MPI	Single center, retrospective	237	N/A	N/A	46%	Periop events: PPV: 11%; NPV: 100%	N/A	N/A	N/A
Marshall ES, et al., 1995 (83) <u>7572662</u>	Periop risk assessment by MPI	Single center, retrospective	117	N/A	N/A	47%	Periop events: PPV: 16%; NPV: 97%	N/A	N/A	N/A
Stratman HG, et al., 1996 (84) <u>8615311</u>	Periop risk assessment by MPI	Single center, retrospective	229	Nonvascvular surgery	N/A	29%	Periop events: PPV: 6%; NPV: 99%	N/A	N/A	N/A
Cohen MC, et al., 2003 (85) <u>14569239</u>	Periop risk assessment by MPI	Single center, retrospective	153	N/A	N/A	31%	Periop events: PPV: 4%; NPV: 100%	N/A	N/A	N/A
Harafuji K, et al., 2005 (86) <u>15849442</u>	Periop risk assessment by MPI	Single center, retrospective	302	N/A	N/A	30%	Periop events: PPV: 2%; NPV: 100%	N/A	N/A	N/A
Beattie WS, et al., 2006 (76) <u>16368798</u>	Compare SE vs. MPI in preop evaluation prior to noncardiac surgery	Meta-analysis of 68 studies	10,049	Preop noncardiac surgery	N/A	N/A	Outcomes: MI and/or death	There were no differences in ROC curves between SE and TI (SE: 0.80; 95% CI: 0.76–0.84 vs. TI: 0.75; 95% CI: 0.70– 0.81)	A moderate-to-large defect, seen in 14% of pts, by either method predicts a postop cardiac event (LR: 8.35; 95% CI: 5.6– 12.45).	LR for SE more indicative of postop cardiac event vs. TI (LR: 4.09; 95% CI: 3.21–6.56 vs. TI: 1.83; 95% CI: 1.59–2.10; p<0.001); this difference was attributable to fewer false negative SEs

Cl indicates confidence interval; LR, likelihood ratio; MPI, myocardial perfusion imaging; N/A, not available; NPV, net present value; periop, perioperative; postop, postoperative; PPV, positive predictive value; ROC, receiver operating characteristic; SE, stress echocardiography; and TI, thallium imaging.

Data Supplement 15. Dobutamine Stress Echocardiography (Section 5.5.3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Patient Population	Events (MI/death)	Ischemia, %	I	Endpoints	P Values, OR: HR: RR & 95% Cl:	Study Limitations & Adverse Events
				Inclusion Criteria			Primary Endpoint (Efficacy) and Results	Secondary Endpoint and Results		
Lane RT, et al.,1991 (87) <u>1927965</u>	Periop risk assessment by DSE	Single center, retrospective	38	Vascular and general surgery	8%	50%	PPV 16%, NPV 100%	N/A	N/A	N/A
Lalka SG. et al., 1992 (88) <u>1578539</u>	Periop risk assessment by DSE	Single center, retrospective	60	Abdominal aortic surgery	15%	50%	PPV 23%, NPV 93%	N/A	Event rate 29% vs. 4.6%, p=0.025	N/A

Eichelberger JP, et al.,	Periop risk	Single center,	75	Major vascular surgery	3%	36%	PPV 7%, NPV 100%	N/A	N/A	N/A
1993	assessment by DSE	prospective								
(89)										
<u>8362778</u>										
Langan EM, et al., 1993	Periop risk	Single center,	74	Aortic surgery	4%	24%	PPV 17%, NPV 100%	N/A	N/A	Surgery deferred in 4 highly
(90)	assessment by DSE	retrospective								positive DSE who proceeded
<u>8264046</u>										with CABG
Davila-Roman V, et al.,	Periop risk	Single center,	88	Aortic and LE PVD	2%	23%	PPV 10%, NPV 100%	Abnormal DSE associated with	N/A	N/A
1993	assessment by DSE	prospective		surgery				increased long-term event rate		
(91)								also (15% vs. 3%; p=0.038)		
<u>8450165</u>	Du ta cita	0.1	40		00/	00/	NDV 4000/		N1/A	N1/A
Shatritz R, et al., 1997		Single center,	42	Aortic surgery	2%	0%	NPV 100%	(2.2%) via 4.4%) an earding	N/A	N/A
(92)	assessment by DSE,	retrospective						(2.3% VS, 4.4%) of cardiac		
9293020	companson to							montaility (0% vs. 2.9%) in those		
								those who did not		
Rossona 1000		Single center	16	Lung-volume reduction	2%	0%	PP\/ 25% NP\/ 100%		Ν/Δ	Ν/Δ
(Q3)	assessment by DSF	prospective	40	surgery	2 /0	570	FFVZJ/0, INFV 100/0	N/A	IN/A	N/A
10469973		prospective		ourgory						
Ballal RS. et al., 1999	Periop risk	Single center.	233	Maior vascular surgery	3%	17%	PPV 0%, NPV 96%	N/A	N/A	Surgery deferred in 8 highly
(94)	assessment by DSE	prospective			• / •	,0				positive DSE who proceeded
10047628	···· , ·	F - F								with PCI
Das MK, et al., 2000	Periop risk	Single center,	530	Nonvascular surgery	6%	40%	PPV 15%, NPV 100%	High risk study (defined as	N/A	N/A
(95)	assessment by DSE	prospective						ischemia before 60% of age-		
<u>10807472</u>								predicted heart rate threshold)		
								associated event rate of 43%.		
								Incremental risk prediction over		
								clinical characteristics		
Morgan PB, et al., 2002	Periop risk	Single center,	78	Vascular and general	0%	5%	PPV 0, NPV 100%	N/A	N/A	All 4 pts with ischemia
(96)	assessment by DSE	retrospective		surgery						underwent preop coronary
<u>12198027</u>	<u> </u>		405		4004	470/				angiography +/- PCI.
Torres MR et al., 2002	Periop risk	Single center,	105	Predominantly	10%	47%	PPV 18%, NPV 98%	N/A	N/A	Beta-blocker therapy given
(97)	assessment by DSE	prospective		vascular surgery						on basis of DSE, 4 pts had
12127610										surgery deterred for
Labib SP at al. 2004	Derion rick	Single contor	420	1/2 vecesiler eurgenv	20/	70/		High NDV over when peak beert	NI/A	PCI/CABG
(08)	Periop risk	Single center,	429	1/5 vascular surgery	270	1 70	PPV 9%, NPV 90%	rate not achieved	N/A	N/A
(90)	assessment by DOE,	prospective								
10204412	maximal ve									
	submaximal									
	achieved peak heart									
	rate									
Raux M, et al., 2006	Periop risk	Single center.	143	Abdominal aortic	N/A	N/A	NPV 93% events	N/A	N/A	All with abnormal DSE
(99)	assessment by a	retrospective		surgery			predominantly were			underwent coronary

<u>16973646</u>	negative DSE and incidence of elevated troponin						nonclinical elevated troponin measures			angiogram +/- PCI prior to surgery
Umphrey LG, et al., 2008 (100) <u>18508373</u>	Periop risk assessment by DSE	Single center, retrospective	157	Orthotropic liver transplantation	3.80%	0%	NPV	Inability during DSE to achieve >80% of targeted heart rate associated with increased cardiac events (22% vs. 6%; p=0.01)	N/A	N/A
Lerakis S, et al., 2007 (101) <u>18219774</u>	Periop risk assessment by DSE	Single center, retrospective	539	Bariatric surgery	0.05% (all noncardiac death)	1.20%	N/A	N/A	N/A	All with abnormal DSE underwent coronary angiogram +/- PCI prior to surgery
Nguyen P, et al., 2013 <u>23974907</u>	Periop risk assessment by DSE	Pooled analysis of 7 studies	580	Orthotropic liver transplantation	N/A	N/A	PPV 37%, NPV 75%	N/A	N/A	N/A

CABG indicates coronary artery bypass graft; DSE, dobutamine stress echocardiography; N/A, not available; NPV, net predictive value; PCI, percutaneous coronary intervention; periop, perioperative; PPV positive predictive value; preop, preoperative; and PVD, peripheral valvular disease.

Data Supplement 16. Preoperative Coronary Angiography (Section 5.7)

Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Po	opulation	Study Intervention	Study Comparator	En	dpoints	P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
					Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Secondary Endpoint and Results		
Monaco et al., 2009 (102) <u>19729114</u>	RCT	208	105	103	Vascular surgery, CRI ≥2	N/A	Routine angiography	Selective angiography	L/T MACE (58±17 mo): p=0.01	MACE by 30 d preop: 11.7% selective vs. 4.8% routine	L/T MACE p=0.003; 30 d MACE p=0.1	Small sample size, unblinded; recruit/random methods unclear

CABG indicates coronary artery bypass graft; CRI, cardiac risk index; DSE, dobutamine stress echocardiography; MACE, major adverse cardiac event; NCS, noncardiac surgery; NPV, net predictive value; PCI, percutaneous coronary intervention; PPV, positive predictive value; preop, preoperative; and RCT, randomized controlled trial.

Data Supplement 17. Coronary Revascularization Prior to Noncardiac Surgery (Section 6.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Pati	ient Population	Study Intervention	Study Comparator	Endpo	pints	P Values, OR: HR: RR & 95% Cl:
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Secondary Endpoint and Results	
McFalls EO, et al., 2004 (36) <u>15625331</u>	Revascularization vs. medical therapy before elective major vascular surgery	RCT	510	258	252	Vascular surgery	Urgent/emergency: UA; LM; EF<20%; AS	Revascularization (CABG or PCI)	Medical therapy	Death (30 d) 3.1% (revascularization) vs. 3.4% (medical therapy)	Lost to follow up: death 2.7 y	Primary endpoint p=0.87; secondary endpoint p=0.92 (RR: 0.98; 95% CI: 0.7–1.37)

AS indicates aortic stenosis; CABG, coronary artery bypass graft; CI, confidence interval; EF, ejection fraction; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; RR, relative risk; and UA, unstable angina.

Data Supplement 18. Timing of Elective Noncardiac Surgery in Patients With Previous PCI (Section 6.1.1)

Table 1. Risk of NCS Following PCI With BMS and Risk of NCS Following PCI With DES

Author,	Study Type	Study		Тур	e of Sur	gery		PCI to	MAC	E	APT	in Perioper	ative	Major Bleedin	g	Study Limitations	Risk of NCS in
Tear		(n)			(70)			NC3 (u)				Periou (70)					Stented Pt
			Low	Intermediate	High	Cardiac	Unknown		Endpoints	(%)	ASA	P2Y ₁₂ Inhibitor	DAPT	Endpoints	(%)		
Risk of NO	CS following	PCI Wit	h BMS														
Kaluza, 2000 (103) <u>10758971</u>	Retrospective	40	N/A	33	65	2	N/A	13	Death, MI	20, 17.5	5	12.5	2.5	Tx or reoperation	27	SC, small sample size, retrospective, APT status not well described	All MACE <2 wk after PCI, emphasizing high- risk early period
Wilson, 2003 (104) 1 <u>2875757</u>	Retrospective	207	N/A	36	58	N/A	6	1–60	Death, MI, ST or revascularization	4	51	14	26	"Excessive" surgical site bleed, Tx	2, 33	Retrospective, SC	All events occurred within first 6 wk
Sharma AK, et al., 2004 (105) <u>15390248</u>	Retrospective	47	N/A	68	30	N/A	2	<21 (n=27); 21–90 (n=20)	Death or MI	25 (<21 d), 15 (21–90 d)	N/A	74 (<21 d), 70 (21–90 d)	N/A	Tx, reoperation	29 (<21 d), 0 (21– 90 d)	Small sample size, retrospective, APT status not well described, SC, 6/7 deaths in first 21 d considered probable ST	Study confined to early phase NCS pt. 6/7 IE in pts who discontinued DAPT. This study suggests importance of continuation of DAPT during early period.
Reddy, 2005	Retrospective	56	10	60	20	N/A	10	<42	MI or CVD	14	79*	32*	N/A	Reoperation, Tx >2 PRBC, Hb drop >2 g/dL	5	Small sample size, retrospective, APT status not well described, SC.	All IE occurred within 42 d of PCI, emphasizing

(106) 15757604														or IC, IO or RP	bleed		All 3 bleeding episodes were in pts receiving P2Y12 inhibitor.	high risk early period
Brichon, 2006 (107) <u>16996274</u>	Retrospective	32	N/A	100	N/A	N/A	N/A	<90	ST	9	66	0	0	Hemothorax or	RP bleed	10	Small sample size, retrospective. 30% of pts received only heparin	ST rather higher (9%) within 3 mo of stenting and lung surgery
Nuttal, 2008 (108) <u>18813036</u>	Retrospective	889	21	46	33	N/A	N/A	64	Death, MI, ST, or TLR	Overall 5.2; <30 d 10.5; 30-90 d 3.8; 90-365 d 2.8		64.5†		Need for non-F	RBC tx	5	Retrospective, APT status not well described, SC	This study emphasizes that risk is highest very early after PCI
Risk of N	CS Following	PCI W	ith DES	1-	1.	1				-		T	1.	I	1-			
Compton, 2006 (109) 17056330	Retrospective	38	31	35	15	N/A	19	260	MI	0	83	40	*†	Postop Tx	3		Small sample size, retrospective, APT status not well described, SC	MACE is low with NCS performed late after PCI
Brotman, 2007 (110) 18081175	Retrospective	114	52	42	6	N/A	N/A	236	MI, ST, or death	1.8	1.8	0	21	Reoperation, IC or RP bleed	0.9		Retrospective, SC	MACE is low with NCS performed late after PCI
Conroy, 2007 (111) <u>18084986</u>	Retrospective	24 (42)	N/A	N/A	N/A	N/A	N/A	N/A	Ischemia on ECG, troponin elevation, or ST	7	N/A	50	N/A	Surgical site bleed or reoperation	2.4		Small sample size, retrospective, APT status not well described, SC. MACE and bleeding EP not well defined	IE: 3/14 pts who discontinued DAPT to ASA alone had ST. 4/4 with alternate anticoagulant or IV APT had no ST, suggesting value of DAPT to prevent IE.
Rhee, 2008 (112) 18475013	Retrospective	141	N/A	96	N/A	N/A	N/A	228	ST	5	5	0	0	N/A	N/A		Retrospective, SC, bleeding endpoint not well defined	IE: >7 d of P2Y ₁₂ inhibitor discontinuation and use of Taxus stent was associated with ST
Godet, 2008 (113) <u>18310674</u>	Retrospective	96	N/A	26	74	N/A	N/A	425	Troponin elevation, ST	12, 2	70	38	N/A	N/A	N/A		Small sample size, APT status and bleeding endpoints not well described, SC	The risk of a serious complication, i.e., ST, was relatively low (2%)
Rabbitts, 2008 (114) <u>18813037</u>	Retrospective	520 (400 <1 y, 120 >1 y)	18	56	25	N/A	N/A	204	Death, MI, ST or revascularization	5.4 (6 <1 y, 3.3 >1 y)	70	33	*†	Surgical site, excessive bleed'	1		Retrospective, SC, APT not well described	IE: Trend to lower IE rate if NCS >1 y after PCI
Chia, 2010 (115) <u>20609638</u>	Retrospective	710	N/A	N/A	N/A	N/A	N/A	348	MI or ST	1.5	14	9	18	N/A	N/A		Retrospective, bleeding endpoint not well defined, questionnaire-based	IE: The low IE rate may have been due to late NCS plus questionnaire method, i.e.,

																	underreporting
Anwarud din, 2009 (116) <u>19539259</u>	Retrospective	481 (606)	5.6	55.6	20	22	N/A	390	Primary ST (definite and moderate probability); secondary death, nonfatal MI, ST	2; 9	15	1	21	N/A	N/A	Retrospective, bleeding endpoint not well defined, SC	Risk of MACE higher if NCS <30 d after PCI but some level persisted for 2-3 y after PCI
Assali, 2009 (117) <u>19626693</u>	Retrospective	78	N/A	81	19	N/A	N/A	414	MI, ST, or death	7.7	18	42	21	Hb drop >2 g/dL	16.7	Small sample size, retrospective, SC	Most MACE occurred <1 wk after NCS and there was no difference in MACE between 6–12 mo vs. >12 mo
Berger, 2010 (118) 20850090	Prospective registry, retrospective	206	N/A	76	20	N/A	4	179	Death, MI, or ST	1.9	N/A	N/A	N/A	N/A	N/A	APT status and bleeding endpoint not well described	Most IEs occur within 1 st wk after NCS
Gandhi, 2011 (119) <u>20824750</u>	Retrospective	135 (191)	23	62	15	N/A	N/A	547	Death, ST, or MI	0.5; 2	54	30	N/A	Bleeding with hypotension, blood loss >500cc, or >2 Tx	6	Retrospective, SC, APT status not well defined	Low risk of IE when NCS performed relatively late after PCI
Brilaki, 2011 (120) 21315220	Retrospective	164	100	N/A	N/A	N/A	N/A	<365	Death, MI or ST	0.6	N/A	N/A	N/A	N/A	N/A	Retrospective, APT status and bleeding endpoint not well defined	Low risk of events in low risk NCS

*All studies were retrospective analyses.

†Rates of individual or dual APT not provided.

APT indicates antiplatelet therapy; ASA, aspirin; BMS, bare-metal stent; CVD, cardiovascular disease; DAPT, dual antiplatelet therapy; ECG, echocardiogram; Hb, hemoglobin; IC, intracranial; IE, ischemic events; IO, intraocular; IV, intravenous; MACE, major adverse coronary event; MI, myocardial infarction; N/A, not applicable; NCS, noncardiac surgery; PCI, percutaneous coronary intervention; postop, postoperative; PRBC, packed red blood cell; pt, patient; RP, retroperitoneal; rx, therapy; SC, single center; and ST, stent thrombosis; and Tx, transfusion.

Table 2. Risk of Noncardiac Surgery Following BMS or DES

Author, Year	Study Type	Study S	Size (n)		Type of Su	ہ) irgery	6)	PCI to NCS (d)		MACE		APT	in Periop Perioc	d (%)	Major blee	ding	Study Limitations	Risk of NCS in Stented Pt
		BMS	DES	Low	Intermediate	High	Unknown		Endpoint	BMS (%)	DES (%)	ASA	P2Y ₁₂ Inhibitor	DAPT	EP	(%)		
Kim, 2008 (121) <u>17346821</u>	Retrospective	101	138	N/A	N/A	N/A	N/A	N/A	Death, ST, or MI	0	2.2	N/A	N/A	N/A	N/A	N/A	Retrospective, SC, APT status and bleeding definition not well described	Limited study but showed low rate of IE for both BMS and DES
Schouten, 2007 (122)	Retrospective	93	99	12	60	23	5	<730	MI or death	2	3	53 (either sir	ngle or dual APT)		N/A	N/A	Small SC, retrospective, APT	IE: APT interruption was associated with higher

17207733			T	\Box													use, IE, and	MACE (5.5% vs. 0.0%;
																	bleeding not well	p=0.023). No difference
																	defined	in MACE between BMS
																		and DES
Van Kuijk, 2009	Retrospective	174	376	33;	51; 47	15; 22	N/A	BMS	D, MI, ST, or	6	13	91*; 70*		9†; 30‡	Severe;	10; 8	Retrospective,	Early NCS (<30 d) in
(123)				31				1314;	revascularization	1					moderate		APT status not	either group was
<u>19840567</u>								DES 511									well described	associated with
																		Increased MACE (overall
																		p<0.001). Dieeuing
																		significantly higher with
																		DAPT in both groups.
Cruden, 2010	Retrospective	1,383	570	19	71	10	N/A	BMS 503;	Primary in-	Primary	Primary	N/A	N/A	N/A	N/A	N/A	Retrospective,	No significant difference
(124)								DES 371	hospital death +	13.3;	14.6;						APT status and	in MACE risk in BMS vs.
20442357									IE; secondary in-	-secondary	secondary						bleeding endpoint	DES. MACE higher if
									hospital death +	1.3	1.9						not well described	NCS <6 wk
Albaladajo 2011	Brospective	623	267	20	10	26	11	20%		1(0.0+	Ν/Λ			Major	0.5	ADT status not	IE and bleeding
(125)	registry.	025	307	20	40	20	14	were after	SA or stroke		1.9		N/A		iviajoi	9.5	well described	relatively high despite
21791513	retrospective							6 mo										relatively long time
	analysis																	between PCI and NCS
Brancati, 2011	Retrospective	70	31	26	65	9	0	288	Death, MI, ST,		6	39 (either A	SA or P2Y ₁₂)	49	Need for Tx or	BMS	Retrospective, SC	Similar IE and bleeding
(126)									or						surgical	14%,		for both groups
<u>21297198</u>									revascularization	1					hemostasis	DES		
T-luching 0010	Dreenestive	4 4 0 2	1005				N1/A	-104		0.5		47.0		07		<u>6%</u>		UE and blood vield low for
	Prospective	1,103	1295	N/A	N/A	N/A	N/A	<420 DMS / /%	Death, IVII, SI	3.5	2.9	17.8	0.6	27	Moderate,	3 2%	Retrospective	IE and bleed risk low for
22396582	retrospective							DFS 1.9%	arouns <42 after						(GUSTO)	5.2 ∕₀, DES		>95% in each group had
22000002	analysis								PCI: >42 d after						(00010)	2.1%		NCS >42 d after stent.
									PCI									
Wijeysundera,	Retrospective	1820‡	905	0§	85.9	14.1	0	Range: 1-	· Death, ACS,	6.7(<45 d),	20 (<45 d),	N/A	N/A	N/A	N/A	N/A	Retrospective,	First 45 d high-risk
2012		(<2 y)	(<2 y)					3,650	revascularization	12.6 (45–180	3.8 (45–180						administrative data	aperiod; DES risk low and
(1) <u>22893606</u>									by 30 d after	d), 2.9 (181–	- d), 1.1 (181–						base	equal to intermediate
									surgery	365 d), 1.7	365 d),1.6							risk surgery by 180 d
										(300-130 u), 0 (731_	, (300-130 u), 1 5 (731_							
										3 650 d)	3 650 d)							
										0.000 07	0,000 0/							

Small study defined as <100 patients *Percentage of patients taking both ASA and P2Y₁₂ inhibitor not provided. †Rates of individual or dual APT not provided. ‡Total number of patients in Wijeysundera study was 8116; 2725 patients underwent stenting <2 y. §Total procedures=7,998; 2,725 <2 y after stent implantation.

ASA indicates aspirin; APT, anti-platelet therapy; BMS, bare-metal stent; DAPT, dual anti-platelet therapy; DES, drug-eluting stent; GUSTO, Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries; IE, ischemic events; MACE, major adverse cardiac events; MI, myocardial infarction; n, subgroup; N/A, not available; NCS, noncardiac surgery; PCI, percutaneous coronary intervention; periop, perioperative; postop, postoperative; pt, patient; SC, single center; ST, stent thrombosis; TLR, target lesion revascularization; TVR, target vessel revascularization; and Tx, transfusion.

Data Supplement 19. Perioperative Beta-Blocker Therapy (Section 6.2.1)

Please see the complete Evidence Review Committee's Systematic Review Report for more information (128). The following few tables/figures are provided for ease of use and may contain data from Poldermans studies which were included in the scope of the systematic review.

Table 1. Summary of Included Studies

Study (Year)	N	Inclusion Criteria	Exclusion Criteria	Types of Surgery	Long-Term Preoperative Beta-Blocker Therapy	Participant Characteristics
Randomized C	ontrolled	Trials			•	
Mangano et al. (1996) (129) <u>8929262</u>	200	Known CAD or ≥2 risk factors (≥65 y of age, hypertension, current smoker, elevated cholesterol level, diabetes mellitus)	Pacemaker dependency, resting ECG abnormalities (left bundle-branch block, marked ST-T abnormalities)	Elective vascular (41%), intra-abdominal (21%), orthopedic (14%), neurosurgical (9%), or other (16%) procedures	13%	Mean age 67.5 y, 39% with known CAD
Jakobsen et al. (1997) (130) <u>9327317</u>	100	Pts undergoing thoracotomy for lung resection with no known current or previous cardiovascular disease	NR	Intrathoracic (100%) procedures	NR	66% males, mean age 60.4 y
Bayliff et al. (1999) (131) <u>10086546</u>	99	Pts >18 y of age undergoing major thoracic operation	Prior beta-blocker use, asthma, HF, heart block, supraventricular tachyarrhythmias, prior specific drug use (digoxin, quinidine, procainamide, amiodarone, diltiazem, verapamil)	Intrathoracic (100%) procedures	0%	62% males, mean age 62.5 y, 6% with prior MI, 5% with current angina
DECREASE-I (1999) (132) <u>10588963</u>	112	Pts with ≥1 cardiac risk factor (>70 y of age, angina; prior MI, HF, diabetes mellitus, limited exercise capacity, ventricular arrhythmias) and positive result on dobutamine stress echocardiography.	Prior beta-blocker use, asthma, very high- risk dobutamine stress echocardiography result (extensive wall-motion abnormalities, strong evidence of left main or severe 3-vessel CAD)	Major vascular (100%) procedures	0%	87% males, mean age 67.5 y, 100% with known CAD, 52% with prior MI, 32% with current angina
Raby et al. (1999) (133) <u>10071990</u>	26	Pts with preoperative myocardial ischemia detected by 24-h ECG monitoring performed within 1–12 d before surgery	Baseline ST-T abnormalities on ECG that preclude accurate interpretation of ECG monitoring for ischemia	Major vascular (100%) procedures	35%	46% males, mean age 68.1 y, 38% with prior MI or current angina
Zaugg et al. (1999)* (134) <u>10598610</u>	43	Pts ≥65 y of age	Prior beta-blocker use, other prior drugs (beta-adrenergic agonists, glucocorticoids, anticonvulsants), heart block, rhythm other than sinus on ECG, HF, bronchospasm, systemic infection, neurological disorders	Intra-abdominal (81%), orthopedic (7%), and other (12%) procedures	0%	40% males, mean age 74.6 y, 37% with known CAD
Urban et al.	107	Pts 50 to 80 y of age undergoing elective	Specific ECG abnormalities (heart block,	Orthopedic (100%) procedures	28%	Mean age 69.5 y, 17% with prior MI, 31% with

(2000) (135) <u>10825304</u>		total knee arthroplasty with known CAD or ≥1 risk factor (≥65 y of age, hypertension, current smoker, elevated cholesterol level, diabetes mellitus)	bundle-branch block, atrial arrhythmias, LV hypertrophy with repolarization abnormalities), LVEF <30%, symptomatic mitral or aortic valvular disease, bronchospasm			current angina
POBBLE (2005) (136) <u>15874923</u>	103	Pts undergoing major elective infrarenal vascular surgery under general anesthesia	Prior MI in past 2 y, unstable angina, positive dobutamine stress test, prior beta- blocker use, asthma, aortic stenosis, heart rate ≤45 beats/min, systolic BP <100 mm Hg	Major vascular procedures (100%)	0%	78% males, median age 73 y
DIPOM (2006) (137) <u>16793810</u>	921	Pts with diabetes mellitus >39 y of age undergoing noncardiac surgery with expected duration >1 h	Long-term beta-blocker use, conditions indicating beta blocker treatment, severe HF, heart block	Orthopedic (33%), intra-abdominal (28%), neurosurgical (8%), vascular (7%), gynecological (5%), and other (19%) procedures	0%	59% males, mean age 64.9 y, 8% with prior MI, 11% with current angina
Lai et al. (2006) (138) 16687084	60	Pts ≥65 y of age undergoing esophagectomy for esophageal cancer with no known prior CAD	Prior beta-blocker use, heart rate ≤55 beats/min, systolic BP ≤100 mm Hg, heart block	Intrathoracic (100%) procedures	0%	82% males, median ages 66 (beta blocker arm) and 67 (control arm),
MaVS (2006) (139) <u>17070177</u>	496	Pts (ASA-PS Class ≤3) undergoing major vascular (abdominal aortic repair, infra- inguinal, or axillo-femoral bypass) surgery	Long-term beta-blocker use, current amiodarone use, reactive airways disease, HF, heart block	Major vascular (100%) procedures	0%	76% males, mean age 66.1 y, 14% with prior MI, 9% with current angina
Neary et al. (2006) (140) <u>16764198</u>	38	Pts undergoing emergency surgery with ≥1 of the following criteria: CAD, cerebrovascular disease (prior stroke or TIA), ≥2 minor risk criteria (≥65 y of age, hypertension, smoker, diabetes mellitus, hypercholesterolemia)	Prior beta-blocker use, heart rate <55 beats/min, heart block, chronic obstructive airway disease, asthma, cardiovascular collapse, uncorrected hypovolemia	Intra-abdominal (29%), amputation (24%), major vascular (21%), orthopedic (16%), and other (10%) procedures	0%	NR
BBSA (2007) (141) <u>17585213</u>	219	Pts undergoing surgery with spinal anesthesia with known CAD or ≥2 risk factors (≥65 y of age, hypertension, current smoker, elevated cholesterol level, diabetes mellitus)	Prior beta-blocker use, significant HF, heart block, severe asthma, left bundle- branch block	Orthopedic (67%), urologic (25%), and other (8%) procedures	0%	55% males, mean age 70.0 y, 8% with prior MI, 6% with current angina
POISE-1 (2008) (142) <u>18479744</u>	8,351	Pts ≥45 y of age and ≥1 of the following criteria: CAD, PVD, stroke, hospitalization for HF within past 3 y, major vascular surgery, or ≥3 minor risk factors (HF, TIA, diabetes mellitus, renal insufficiency, age >70 y, nonelective surgery, intrathoracic surgery, or intraperitoneal surgery)	Prior beta-blocker use, verapamil use, heart rate <50 beats/min, heart block, asthma, CABG surgery in previous 5 y with no subsequent ischemia, low-risk surgery	Vascular (41%), intraperitoneal (22%), orthopedic (21%), and other (16%) procedures	0%	63% males, mean age 69.0 y, 43% with known CAD
Yang et al. (2008) (143) <u>18953854</u>	102	Pts ≥45 y of age with ≥1 of the following criteria: CAD, PVD, stroke, hospitalization for HF in prior 3 y, or ≥3 minor risk factors (HF, diabetes mellitus, ≥65 y of age, hypertension, hypercholesterolemia,	Prior beta-blocker use, heart rate <50 beats/min, cardiac pacemaker, heart block, asthma, chronic obstructive pulmonary disease	Intra-abdominal and intrathoracic procedures	0%	59% males, mean age 71.0 y

		smoker, intrathoracic surgery, or intraperitoneal surgery)					
DECREASE-	1,066	Pts ≥40 y of age undergoing elective	Current use, or contraindication to use, of	General surgical (39%), urolo	gic (19%),	0%	60% males, mean age 65.4 y, 6% with current
IV (2009)		noncardiovascular surgery with an estimated	beta blockers or statins	orthopedic (16%), ear-nose-t	nroat (12%), and		angina, 5% with previous MI
(144)		1%–6% perioperative cardiovascular risk		other surgical (14%) procedu	res		
<u>19474688</u>							
Cohort Studies	5						
Matyal et al.	348	Pts undergoing supra- and infrainguinal	NR	Major vascular (100%)	0%†		60% males
(2008)† (145)		vascular surgery		procedures			
18503921							

*Information on 2 of the study arms (preoperative/postoperative atenolol *versus* no beta-blocker therapy). The third study arm (intraoperative atenolol) did not meet the review definition for eligible perioperative beta-blockade. †Only data on the subgroup of 348 pts who were not previously receiving preoperative long-term beta-blocker therapy.

ASA-PS indicates American Society of Anesthesiologists Physical Status; BBSA, Beta Blocker in Spinal Anesthesia; BP, blood pressure; CABG, coronary artery bypass graft; CAD, coronary artery disease; DECREASE, Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography; DIPOM, Diabetic Postoperative Mortality and Morbidity; ECG, electrocardiogram; HF, heart failure; LV, left ventricular; LVEF, left ventricular ejection fraction; MaVS, Metoprolol After Vascular Surgery; MI, myocardial infarction; NR, not reported; pts, patients; POBBLE, Perioperative Beta Blockage; POISE, Perioperative Ischemic Study Evaluation; PVD, peripheral vascular disease; and TIA, transient ischemic attack.

		Beta					Events,	Events,	%
Study	Year	Blocker				RR (95% CI)	Beta-Blockers	Control	Weight
Non POISE Trials	6								
Mangano 1996	1996	Atenolol		<u>+</u>		0.51 (0.05, 5.54)	1/99	2/101	0.61
Jakobsen 1997	1997	Metoprolol			•	3.00 (0.13, 68.26)	1/15	0/15	0.36
Raby 1999	1999	Esmolol		← ┼ ├ ─		0.25 (0.01, 5.62)	0/15	1/11	0.36
Zaugg 1999	1999	Atenolol	•			0.14 (0.01, 2.47)	0/20	3/19	0.41
Urban 2000	2000	Esmolol & Metoprolol		→ <u></u>	-	0.35 (0.04, 3.28)	1/52	3/55	0.70
POBBLE	2005	Metoprolol	•			0.21 (0.02, 1.79)	1/53	4/44	0.75
DIPOM	2006	Metoprolol				1.49 (0.25, 8.88)	3/462	2/459	1.09
MaVS	2006	Metoprolol				0.92 (0.51, 1.67)	19/246	21/250	9.80
Neary 2006	2006	Atenolol				0.56 (0.12, 2.68)	2/18	4/20	1.40
Yang 2008	2008	Metoprolol				1.00 (0.06, 15.56)	1/51	1/51	0.46
Bayliff 1999	1999	Propranolol				(Excluded)	0/49	0/50	0.00
Lai 2006	2006	Metoprolol				(Excluded)	0/30	0/30	0.00
BBSA	2007	Bisoprolol				(Excluded)	0/110	0/109	0.00
Subtotal (I-squar	ed = 0.0%	%, p = 0.772)		\Diamond		0.76 (0.47, 1.21)	29/1220	41/1214	15.94
				ſ					
POISE Trial									
POISE	2008	Metoprolol		-		0.71 (0.58, 0.87)	152/4174	215/4177	84.06
Subtotal (I-squar	ed = .%,	p = .)				0.71 (0.58, 0.87)	152/4174	215/4177	84.06
				Î					
Overall (I-square	ed = 0.0%	, p = 0.837)		\diamond		0.72 (0.59, 0.86)	181/5394	256/5391	100.00
			I						
			1	1	10				

Figure 1. Effect of Perioperative Beta Blockade on In-Hospital or 30-Day Nonfatal MI in RCTs, With Members of the DECREASE Family of Trials Excluded

Effect of perioperative beta blockade on in-hospital or 30-day nonfatal MI, within subgroups defined by the POISE-1 trial versus other trials. The pooled effect is expressed as a pooled RR with associated 95% CI. The solid black diamonds represent point estimates in individual RCTs. The area of each gray square correlates with its contribution toward the pooled summary estimates. Horizontal lines denote 95% CIs. Estimates to the left of the line of unity (i.e., RR: 1) indicate superior clinical outcomes (i.e., fewer nonfatal MIs) with beta blockade (*"Favors Beta-Blockers"*), whereas estimates to the right of the line of unity indicate superior clinical outcomes with control (*"Favors Control"*). The blue diamonds represent the pooled estimates for all studies (RR: 0.72; 95% CI: 0.59–0.86), as well as the POISE-1 trial (RR: 0.70; 95% CI: 0.57–0.86) and the subgroup of other trials (RR: 0.76; 95% CI: 0.47–1.21). Statistical heterogeneity, as measured by the I² statistic, was 0% for the overall analysis.

BBSA indicates Beta Blocker in Spinal Anesthesia; CI, confidence interval; DECREASE, Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography; DIPOM, Diabetic Postoperative Mortality and Morbidity; MaVS, Metoprolol After Vascular Surgery; MI, myocardial infarction; POBBLE, Perioperative Beta Blockade; POISE, Perioperative Ischemic Evaluation Study; RCT, randomized controlled trial; and RR, relative risk.

Figure 2. Effect of Perioperative Beta Blockade on In-Hospital or 30-Day Nonfatal Stroke in RCTs, With Members of the DECREASE Family of Trials Excluded

Effect of perioperative beta blockade on in-hospital or 30-day nonfatal stroke, within subgroups defined by the POISE-1 trial versus other trials. The pooled effect is expressed as a pooled RR with associated 95% CI. The solid black diamonds represent point estimates in individual RCTs. The area of each gray square correlates with its contribution toward the pooled summary estimates. Horizontal lines denote 95% CIs. Estimates to the left of the line of unity (i.e., RR: 1) indicate superior clinical outcomes (i.e., fewer nonfatal strokes) with beta blockade (*"Favors Beta-Blockers"*), whereas estimates to the right of the line of unity indicate superior clinical outcomes with control (*"Favors Control"*). The blue diamonds represent the pooled estimates for all studies (RR: 1.86; 95% CI: 1.09–3.16), as well as the POISE-1 trial (RR: 1.93; 95% CI: 1.01–3.68) and the subgroup of other trials (RR: 1.72; 95% CI: 0.67–4.40). Statistical heterogeneity, as measured by the I² statistic, was 0% for the overall analysis.

BBSA indicates Beta Blocker in Spinal Anesthesia; CI, confidence interval; DECREASE, Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography; DIPOM, Diabetic Postoperative Mortality and Morbidity; MaVS, Metoprolol After Vascular Surgery; POBBLE, Perioperative Beta Blockade; POISE, Perioperative Ischemic Evaluation Study; RCT, randomized controlled trial; and RR, relative risk.

Figure 3. Effect of Perioperative Beta Blockade on In-Hospital or 30-Day Mortality in RCTs, With Members of the DECREASE Family of Trials Excluded

Effect of perioperative beta blockade on in-hospital or 30-day mortality rate, within subgroups defined by POISE-1 trial versus other trials. The pooled effect is expressed as a pooled RR with associated 95% CI. The solid black diamonds represent point estimates in individual RCTs. The area of each gray square correlates with its contribution toward the pooled summary estimates. Horizontal lines denote 95% CIs. Estimates to the left of the line of unity (i.e., RR: 1) indicate superior clinical outcomes (i.e., fewer deaths) with beta blockade (*"Favors Beta-Blockers"*), whereas estimates to the right of the line of unity indicate superior clinical outcomes with control (*"Favors Control"*). The blue diamonds represent the pooled estimates for all studies (RR: 1.30; 95% CI: 1.03–1.63), as well as the POISE-1 trial (RR: 1.33; 95% CI: 1.03–1.73) and the subgroup of other trials (RR: 1.17; 95% CI: 0.70–1.94). Statistical heterogeneity, as measured by the I² statistic, was 0% for the overall analysis.

BBSA indicates Beta Blocker in Spinal Anesthesia; CI, confidence interval; DECREASE, Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography; DIPOM, Diabetic Postoperative Mortality and Morbidity; MaVS, Metoprolol After Vascular Surgery; POBBLE, Perioperative Beta Blockade; POISE, Perioperative Ischemic Evaluation Study; RCT, randomized controlled trial; and RR, relative risk.

Data Supplement 20. Perioperative Statin Therapy (Section 6.2.2)

Study Name, Author, Year	Aim of Study	Study Type	Study Intervention (n)	Study Comparator Group (n)	Patient	Patient Population		Endpoints			Study Limitations & Adverse Events
					Inclusion Criteria	Exclusion Criteria	Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Sanders RD, et al., 2013 (146) <u>23824754</u>	Meta-analysis	Meta-analysis	Meta-analysis	Meta-analysis	Meta-analysis	Meta-analysis	Meta-analysis	Meta- analysis	Meta- analysis	Meta-analysis	Meta-analysis
Raju MG, et al., 2013 (147) <u>23670940</u>	Impact of statin therapy on 0-d all- cause mortality, AF, and nonfatal MI	Retrospective cohort of pts undergoing intermediate-risk noncardiac, nonvascular surgery	Statin use	No statin use	All pts undergoing ACC/AHA intermediate- risk noncardiovascular surgeries during the study period	N/A	Decreased composite endpoint of 30-d all-cause mortality, AF, and nonfatal MI after adjusting for baseline characteristics	N/A	All-cause mortality reduced	OR: 0.54; 95% CI: 0.30–0.97; p=0.039. All-cause mortality p=0.0002.	Retrospective cohort
Lau WC, et al., 2013 (148) <u>23535525</u>	Evaluated the benefits of adding ASA to beta blocker and statin (ABBS), with/without ACEI on postop outcome in high-risk pts undergoing major vascular surgery	Retrospective review	Statin, beta blocker and ASA use	No recorded use of combination therapy	Consecutive pts undergoing elective vascular surgery	Pts with emergent and traumatic vascular procedures, peripheral digit or distal limb amputation, or venous procedures	30-d and 12-mo mortality and survival status, MI was 3-fold lower in ABBS±ACEI (n=513) as compared with non–ABBS±ACEI (n=306). The 12-mo mortality was 8- fold lower in ABBS±ACEI as compared non– ABBS±ACEI (5.9% vs. 37.5%)	N/A	N/A	MI OR 0.31(95% CI: 0.15–0.61; p=0.001) in ABBS±ACEI (n=513) vs. non-ABBS±ACEI (n=306). 12-mo mortality HR: 0.13 (95% CI: 0.08–0.20; p<0.0001) in ABBS±ACEI vs. non- ABBS±ACEI	Retrospective , but reviews a real world pattern
Durazzo AE, et al., 2004 (149) <u>15111846</u>	To analyze the effect of atorvastatin compared with placebo on the occurrence of a 6-mo composite of cardiovascular events after vascular surgery	RCT	20 mg by mouth atorvastatin for 45 d (55 pts)	Placebo (50 pts)	Pts scheduled to undergo elective noncardiac arterial vascular surgery, defined as aortic, femoropopliteal and carotid procedures	Severe hepatic or renal disease, pregnancy or breast-feeding; current or previous use of drugs to treat dyslipidemia; recent cardiovascular event, such as stroke, MI, or UA; serious infectious disease malignancy	Less death from cardiac cause, nonfatal MI, UA, and stroke with active treatment	None	None	0.03	Small size

ACC indicates American College of Cardiology; ACEI, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; AHA, American Heart Association; ASA, aspirin; BB, beta-blocker; and MI, myocardial infarction; N/A, not available; postop, postoperative; pt, patient; RCT, randomized controlled trial; and UA, unstable angina.

Study Name, Author, Year	Aim of Study	Study Type	Study Intervention (n)	Study Comparator Group (n)	Patient F	Population	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR: & 95% CI:	Study Limitations & Adverse Events
					Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Oliver MF, et al., 1999 (150) <u>10519497</u>	To evaluate the impact of the alpha-2 adrenergic agonist, mivazerol, on rates of MI or cardiac death in pts with known CHD undergoing noncardiac surgery	A double- blind randomized placebo- controlled trial was conducted in 61 European centers	Mivazerol, 4.0 mcg/kg, was given during the first 10 min followed by a constant rate infusion. Infusion was started 20 min before the induction of anesthesia and continued for 72 h postoperatively	0.9% saline solution started 20 min before the induction of anesthesia	Pts with known CHD and those at high risk for CHD were eligible for the trial. All were scheduled to have noncardiac surgery estimated to last for at least 1 h and to have postsurgical hospitalization of at least 4 d.	UA, MI in the past 14 d, uninterpretable ECG Q-waves, cardiogenic shock, prescribed alpha agonist, severe hepatic disorders, emergency surgery, pregnant or nursing women or women aged <45 y without adequate contraception	N/A	N/A	Results presented relate to the 1,897 pts with known previous CHD. Preplanned subgroup analysis based on tests of heterogeneity. Primary endpoint was the incidence of acute MI or death during the intra- and postop hospitalization period (up to 30 d after surgery). 10.4% decrease in the primary endpoint (MI or death) and a 37% reduction in all-cause death. Secondary endpoints relate to the period of 30 d (follow- up visit) included HF, life-threatening arrhythmias, and UA	Hypotension was defined as a decrease in systolic BP of ≥20% below the baseline figure. In 10.5% (150) of mivazerol group pts and 9.4% (134) of placebo group pts, the infusion had to be stopped prematurely: of these, 62% were because of adverse events, such as hypotension, brady- or tachycardia, cardiac arrest, or organ failure; 19% (of the 62%) had to be withdrawn from the trial	NS	Cardiac deaths: MI endpoint 95% CI: 0.25–0.96 (p=0.037); for all surgeries 95% CI: 0.67–1.18 (p=NS); for vascular surgery 95% CI: 0.45–0.98 (p=0.03)	Overall study negative, positive results presented from CHD pts (not those pts with only risk factors)
Stuhmeier KD, et al., 1996 (151) <u>8873539</u>	To evaluate the effects clonidine (n=145) or placebo (n=152) on the incidence of periop myocardial ischemic episodes, MI,	Randomized double-blind study design	2 mcg/kg-1 oral clonidine (145 pts)	Oral placebo (15 pts)	Pts undergoing nonemergent vascular surgery who were not taking clonidine	Chronic myocardial ischemia, preop digitalis or chronic clonidine medication, AF, left or right BBB, and second-degree or greater atrioventricular- nodal block in the preop ECG	N/A	N/A	Myocardial IEs reduced, no change in MI and cardiac death	More fluid given to clonidine group to treat hypotension	N/A	Reduced the incidence of periop myocardial IEs from 39% (59 of 152) to 24% (35 of 145) (p<0.01)	Size

Data Supplement 21. Alpha-2 Agonists (Section 6.2.3)

	and cardiac death												
Wallace AW, et al., 2004 (152) <u>15277909</u>	To test the hypothesis that prophylactic clonidine reduces the incidence of periop myocardial ischemia and postop death in pts undergoing noncardiac surgery	Prospective, double- blinded, clinical trial	125 pts with CAD or risk factors	65 pts with CAD or risk factors	Definite CAD, peripheral arterial disease, and previous vascular surgery or 2 cardiac risk factors	UA, uninterpretable ECG, preop alpha blocker use, symptomatic AS; systolic BP <100 mmHg; and refusal or inability to give informed consent	0.2 mg oral tablet of clonidine 1 h before surgery and a 7.0 cm ² transdermal patch of clonidine	Placebo pill and patch	30-d mortality reduced, 2-y mortality reduced, decreased IEs	N/A	N/A	p=0.035 for 30-d mortality, p=0.048 for 2-y mortality, p=0.01 for IEs	Size

AF indicates atrial fibrillation; AS, aortic stenosis; BBB, bundle branch block; BP, blood pressure; CAD, coronary artery disease; CHD indicates coronary heart disease; ECG, electrocardiogram; IE, ischemic episode; MI, myocardial infarction; N/A, not available; NS, nonsignificant; periop, perioperative; postop, postoperative; preop, preoperative; and UA, unstable angina.

Data Supplement 22. Perioperative Calcium Channel Blockers (Section 6.2.4)

Study Name, Author, Year	Aim of Study	Study Type	Study Intervention	Study Comparator Group	Patient Pop	ulation	I	Endpoints	P Values, OR: HR: RR: & 95% Cl:	Study Limitations & Adverse Events	
					Inclusion Criteria	Exclusion Criteria	Primary Endpoint (efficacy and results)	Safety Endpoint and Results	Secondary Endpoint and Results		
Wijeysundera DN, et al., 2003 (153) <u>12933374</u>	To evaluate the impact of CCBs on death, MI, supraventricular tachycardia, and major morbid events	Meta- analysis RCT evaluating CCBs during noncardiac surgery	CCB, 11 studies with 1,107 pts	Placebo	Published RCTs that evaluated CCBs (administered immediately preoperatively, intraoperatively, or postoperatively within 48 h) during noncardiac surgery, and reported any of the following outcomes: death, MI, ischemia, or supraventricular tachycardia	Studies exclusively recruited prior organ transplant recipients, individuals younger than 18 y of age, pts who had already developed supraventricular tachycardia, or pts undergoing surgery for subarachnoid hemorrhage	Mortality not decreased, ischemia and supraventricular tachycardia reduced	Trend toward hypotension	Combined endpoint of MI and death	RR: 0.49 (95% CI: 0.3– 0.8) for ischemia; RR: 0.52 (95% CI: 0.37– 0.72) for supraventricular tachycardia; RR: 0.35 (95% CI 0.15–0.86)	Meta- analysis, different types of CCBs
Kashimoto S, et al., 2007 (154) <u>17321926</u>	To assess whether nicorandil reduces the likelihood of cardiac events during and after intermediate risk surgery	Multicenter randomized trial	Nicoradil intraoperatively during surgery	Standard therapy, 237 pts	Intermediate cardiac risk pts having intermediate cardiac risk surgery	N/A	N/A	p=0.02; 95% Cl: 0.03– 0.76	N/A	95% CI: 0.03–0.76	Size, limited report

Study Name, Author, Year	Aim of Study	Study Type	Study Intervention	Study Comparator Group	Patient P	opulation		Endpoint	S	P Values, OR: HR: RR: & 95% Cl:	Study Limitations & Adverse Events
					Inclusion Criteria	Exclusion Criteria	Primary Endpoint (Efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Turan A, et al., 2012 (155) <u>22253266</u>	To evaluate the association of ACEI therapy with periop respiratory morbidity in adult noncardiac surgical pts, 30-d mortality secondary endpoint	Retrospective, controlled	ACEI	No ACEI	79,228 adult general surgical pts treated at the Cleveland Clinic main campus hospital between 2005 and 2009. Pts who received only general anesthesia were included.	30-d follow up data unavailable	The observed incidence of experiencing ≥1 intraoperative respiratory morbidity was 3.6% (n=360) for pts who took ACEI and 2.7% (n=1814) for pts who did not. The observed incidence of the collapsed postop respiratory morbidity was 4.2% (n=412) and 3.1% (n=2053) in pts who did and did not take ACEIs.	N/A	No significant association was found between ACEI use and any of the secondary outcomes, including 30-d mortality and the composite of in-hospital morbidity and mortality	Secondary endpoint: 30-d mortality (OR: 0.93; 95% CI: 0.73– 1.19), ACEI vs. non– ACEI p=0.56; composite of in- hospital morbidity and mortality (OR: 1.06; 95% CI: 0.97– 1.15)	Retrospective chart review to obtain data

Data Supplement 23. Angiotensin-Converting Enzyme Inhibitors (Section 6.2.5)

ACEI indicates angiotensin-converting enzyme inhibitors; N/A, not available; periop, perioperative; and pt, patient.

Data Supplement 24. Antiplatelet Agents (Section 6.2.6)

Table 1. Risk of Bleeding on Single or Dual Antiplatelet Therapy With Noncardiac Surgery

Study Name, Author, Year	Patients on DAPT at Time of NCS	DAPT Patients With Bleeding	DAPT Patients With Bleeding (%)	Patients on Single APT at Time of NCS	Single APT Patients With Bleeding	Single APT Patients With Bleeding (%)	Study Limitations
Kaluza GL, et al., 2000 (103) <u>10758971</u>	1	1	100	N/A	N/A	N/A	Small*, retrospective, SC, APT status not described
Wilson SH, et al., 2003 (104) <u>12875757</u>	54	1	1.85	134	1	0.7	Retrospective, SC

Brotman DJ, et al.,	24	1	4	2	0	0	Retrospective, SC
2007							
(110)							
18081175							
Assali A, et al., 2009	17	3	17.6	47	7	15	Small, retrospective, SC
(117)							
19626693							
Van Kuijk JP, et al.,	128	27	21	421	17	4	Retrospective, APT status not described
2009							
(123)							
<u>19840567</u>							
Total	224	33	14.7	604	25	4.1	N/A

*Small= <100 patients APT indicates antiplatelet therapy; DAPT, dual antiplatelet therapy; N/A, not applicable; NCS, noncardiac surgery; pt, patient; and SC, single center.

Table 2. Value of APT during NCS with BMS*

Author, Year	Study Size		Type of Su	urgery (%)	PCI to NCS (d)	М	ACE	APT in F	Periop Peri	iod (%)	Major	Bleeding	Study Limitations	Value/Risk of APT
		Low	Intermediate	High	Unknown		Endpoint	(%)	ASA	P2Y ₁₂ Inhibitor	DAPT	Endpoint	(%)		
Wilson, 2003 (12) <u>12875757</u>	207	0	36	58	6	1-60	Death, MI, ST, or revascularization	4	51	14	26	"Excessive" surgical site bleed	2	Retrospective, SC	IE: unclear
												Tx	33 No APT: 38.5% ASA: 31.7% DAPT: 42.6%		Bleeding: no excessive bleeding with ASA or DAPT
Sharma, 2004 (13) 15390248	47	0	68	30	2	<21 (n=27)	Death or MI	25 (<21 d) Death: ASA 5%, DAPT 85.7%	N/A	74	N/A	Tx	29	Small, retrospective, SC	IE: Suggestive of need for DAPT <21 d after PCI Bleeding: No excess with DAPT vs
10000240						21-90 (n=20)		15 (21-90 d)		70		Reoperation <21 d after PCI: ASA 43.8%, DAPT 25.0%	0		ASA alone
Reddy, 2005 (14) <u>15757604</u>	56	10	60	20	10	<42	MI or CVD ST	14 8.9 (3/5 on DAPT)	79*	32*	N/A	Reoperation, Tx >2 PRBC, Hb drop >2 g/dL or IC, IO or RP bleed	3 (2 DAPT, 1 P2Y ₁₂ inhibitor only)	Small, retrospective	IE: unclear Bleeding: unclear
Nuttal,	899	21	46	33	0	64	Death, MI, ST or	Overall 5.2; <30 d	64.5†			Need for	5	SC, retrospective, APT status	IE: APT may be better than no APT,

2008		TLR	10.5; 30–90 d 3.8;	nonPRBC tx	not well defined at NCS	but SAPT vs. DAPT no difference
(16)			90–365 d 2.8			
18813036						Bleeding: unclear
			MACE: no APT after			5
			PCI 20 (4/20): ASA			
			3.8 (3/79): P2Y ₁₂ 2.9			
			(1/35): DAPT 3.7			
			(28/752)			

*All studies were retrospective analyses.

†Rates of individual or dual APT not provided.

APT indicates antiplatelet therapy; ASA, aspirin; BMS, bare-metal stent; CVD, cardiovascular disease; DAPT, dual antiplatelet therapy; Hb, hemoglobin; IC, intracranial; IE, ischemic event; IO, intraocular; MACE, major adverse cardiac event; MI, myocardial infarction; N/A, not available; NCS, noncardiac surgery; PCI, percutaneous coronary intervention; periop, perioperative; PRBC, packed red blood cells; RP, retroperitoneal; SAPT, single antiplatelet therapy; SC, single center; ST, stent thrombosis; TLR, target lesion revascularization; and Tx, transfusion.

Table 3. Value of APT during NCS With DES*

Study, Author	Study Size (n)		Type of Sur	gery (%	6)	PCI to NCS (d)	MA	\CE	APT in	Periop Pe	riod (%)	Major Blee	eding	Study Limitations	Value/Risk of APT
		Low	Intermediate	High	Cardiac		Endpoint	(%)	ASA	P2Y12 inhibitor	DAPT	Endpoint	(%)		
Brotman, 2007 (18) <u>18081175</u>	114	52	42	6		236	MI, ST, or death	1.8	1.8	0	21	Reoperation or IC or RP bleed	0.9	Retrospective, SC	IE: In low- and intermediate-risk NCS late after PCI, lack of APT does not adversely impact IE
Rhee, 2008 (20) <u>18475013</u>	141	N/A	96	N/A	4	228	ST	5 for >7 d of P2Y ₁₂ discontinuation (OR: 12.8; p=0.027)	5	0	0	N/A	N/A	Retrospective, SC, bleeding endpoint not well defined	IE: Suggests value of DAPT or SAPT to prevent IE
Godet, 2008 (21) <u>18310674</u>	96	N/A	26	74	N/A	425	Troponin elevation ST	12 2	70	38	N/A	N/A 26% of pts received LMWH in periop period	N/A	Retrospective, APT not well described, SC, bleeding not well defined	IE: IE uncommon late after PCI
Rabbitts, 2008 (22) <u>18813037</u>	520 <1 y=400 >1 y=120	18	56	25	N/A	204	Death, MI, ST, or revascularization	5.4 (<1 y =6, >1 y =3.3)	70	33	*	Surgical site 'excessive bleed'	1	Retrospective, APT not well defined, SC	IE: Continued P2Y ₁₂ associated with MACE in univariate but not multivariate analysis; time after PCI most important factor
Anwaruddin, 2009 (25) <u>19539259</u>	481 (606)	5.6	55.6	20	22	390	Primary: ST (definite + moderate probability)	2	15	1	21	N/A	N/A	Retrospective, SC, bleeding endpoint not well defined	IE: At a mean of slightly >1 y use or nonuse of ASA or clopidogrel was not related to MACE

							Secondary: death, non-fatal MI, ST	9							
Assali, 2009 (26) <u>19626693</u>	78	N/A	81	19	N/A	414	MI, ST, or cardiac death	7.7 MACE according to APT use: no APT 10 (2/20); ASA or clopidogrel 3.9 (2/51); DAPT 11.8 (2/17)	18	42	21	Hb drop > 2g/dL	16.7	Retrospective, small, SC	Suggestion that one APT is better than none, but DAPT not better than SAPT

*All studies were retrospective analyses.

APT, antiplatelet therapy; ASA, aspirin; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; Hb, hemoglobin; IC, intracranial; IE, ischemic events; MI, myocardial infarction; LMWH, low-molecular-weight heparin; MACE, major adverse cardiac events; n, subgroup of N; N/A, not available; NCS, noncardiac surgery; OR, odds ratio; PCI, percutaneous coronary intervention; periop, perioperative; RP, retroperitoneal; SAPT, single antiplatelet therapy; SC, single center; and ST, stent thrombosis.

Table 4. Value of APT During NCS With BMS or DES*

Author	Stud	y Size		Type of Sur	gery (%)		PCI to NCS (d)		MACE		APT	in Periop Perio	d (%)	Major	Bleeding	Study Limitations	Value/Risk of APT
	BMS	DES	Low	Intermediate	High	Cardiac		Endpoint	BMS (%)	DES (%)	ASA	P2Y12 inhibitor	DAPT	Endpoint	(%)		
Van Kuijk, 2009 (31) <u>19840567</u>	174	376	BMS 33; DES 31	BMS 51; DES 47	BMS 15; DES 22	N/A	BMS: 1,314; DES: 511	Death, MI, ST, or revascularization	6	13	BMS 9	1*; DES 70*	BMS 9†; DES 30†	Severe: death, IC, reoperation, or Tx of >4 units Moderate : Tx of 1–3 units	Severe 10; moderate 8	Retrospective, APT not well described	Bleeding complications significantly higher with DAPT in both groups
Cruden, 2010 (5) <u>20442357</u>	1,383	570	19	71	10	N/A	BMS: 503; DES: 371	Primary: in-hospital death or IE; secondary: in- hospital death or MI	Primary: 13.3; Secondary: 1.3	Primary: 14.6; Secondary 1.9	N/A	N/A	N/A	N/A	N/A	Retrospective, APT not well described, bleeding endpoint not well defined	IE: No difference between SAPT and DAPT for pts with MACE; SAPT 45% and DAPT 55% Bleeding: significantly worse (p<0.001) with DAPT (21%) than

																	SAPT (4%)
Albaladejo, 2011 (32) <u>21791513</u>	623	367	20	40	26	14	Π	MI, ST, HF, CS, SA, or stroke	10.9†		N/A	N/A	N/A	Major	9.5‡	Retrospective, APT not well defined	E: By multivariate analysis, discontinuation of all APT increased MACE risk (OR: 2.11; CI: 1.04–6.55; p=0.04). Bleeding: no difference between APT and no APT during NCS; SAPT vs. DAPT not described.
Tokushige, 2012 (127) <u>22396582</u>	1,103	1,295	N/A	N/A	N/A	N/A1	N/A	Death, MI, or ST 30 d after NCS	3.5	2.9	N/A	N/A	N/A	N/A	BMS: 3.2%; DES: 2.1%	Retrospective, use of APT based on hospital charts	IE (p=0.0005): No APT 2.3% (26/1088); SAPT: 1.1% (5/416); DAPT: 4.9% (28/534) Bleeding (p=0.047): no APT 2.4% (27/104); SAPT: 1.6% (7/403); DAPT: 4.0% 22/490)
Hawn, 2013 (156) <u>24101118</u>	21,986	20,003	37.5	29.5	33	N/A	730 (52.2% <1 y)	Death, MI, revascularization	5.1	4.3	N/A	N/A	N/A	N/A	N/A	Retrospective, use of administrative database, APT analysis very small (n=369); APT cessation analysis limited to NCS >6 wk after stenting	MACE w/ APT cessation OR: 0.86 (95%CI: 0.6–1.29)

*All studies were retrospective analyses. The Tokushige study used data from a prospective registry. In the Hawn study, surgical risk was classified as "low" for operations of the eye, ear, skin, and other, "intermediate" for genitourinary and musculoskeletal, and "high" for digestive, respiratory, vascular, and nervous system. †Rates of individual or dual APT not provided.

APT indicates antiplatelet therapy; ASA, aspirin; BMS, bare-metal stent; CABG, coronary artery bypass graft; CI, confidence interval; DES, drug-eluting stent; HF, heart failure; IC, intracranial; IE, ischemic event; MACE, major adverse cardiac event; MI, myocardial infarction; N/A, not available; NCS, noncardiac surgery; OR, odds ratio; PCI, percutaneous coronary intervention; periop, perioperative; pt, patient; SAPT, single antiplatelet therapy; ST, stent thrombosis; and Tx, transfusion.

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient P	opulation	Study Intervention	Study Comparator	Endpo	ints	P Values, OR: HR: RR: & 95% Cl:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (Efficacy) and Results	Secondary Endpoint and Results		
Polanczyk CA, et al., 1998 (157) <u>9729180</u>	To determine the incidence, clinical correlates, and effect on LOS of periop SVA in pts having major noncardiac surgery	Prospective SC cohort	4,181	4,181	N/A	Pts ≥50 y of age who had major, nonemergency, noncardiac procedures and were in sinus rhythm at the preop evaluation	N/A	N/A	N/A	Periop SVA occurred in 7.6% of pts (2.0% during surgery)	Male sex (OR: 1.3; 95% CI: 1.0–1.7); age >70 (OR: 1.3; CI: 1.0–1.7), valve disease (OR: 2.1; CI: 1.2–3.6), hx of SVA (OR: 3.4; CI: 2.4–4.8), asthma (OR: 2.0; CI: 1.3–3.1), CHF (OR: 1.7; CI: 1.1–2.7), PACs (OR: 2.1; CI: 1.3–3.4), intrathoracic procedure (OR: 9.2; CI: 6.7–13) were independent predictors of risk of SVA	N/A	Did not separate AF from other SVA, nor break out intrathoracic procedures
Amar D, et al., 2002 (158) <u>12198031</u>	To determine incidence and outcomes of ventricular arrhythmia after lung resection	Prospective SC cohort	412	412	N/A	Pts undergoing lung resection at a single center 1994-1999	Rhythm other than sinus, receiving AADs, high grade AV block, hemodynamically unstable after	N/A	N/A	NSVT occurred in 15% of pts, no sustained VT or cancer. Postop AF predictive of NSVT (OR: 2.6; CI: 1.4– 4.8; p=0.002)	Periop NSVT had no impact on outcome	N/A	Only included lung resection pts

Data Supplement 25. Management of Postoperative Arrhythmias and Conduction Disorders (Section 6.3)

							surgery						
Bayliff CD, et al., 1999 (131) <u>10086546</u>	To determine whether propranolol decreases risk of postop arrhythmia in noncardiac thoracic surgery pts	Prospective randomized double blind placebo controlled trial	99	49	50	Pts undergoing major noncardiac thoracic surgery	Hx of CHF or asthma	Propranolol 10 mg every 6 h for 5 d	Placebo	Treated arrhythmia occurred in 6% of propranolol treated pts and 20% of placebo pts	N/A	p=0.07	Small size, mixed arrhythmias and included sinus tachycardia in outcome
Roselli EE, et al., 2005 (159) <u>16077410</u>	To determine incidence and predictors of AF after lung cancer resection	Retrospective observational cohort	604	604	N/A	Consecutive pts undergoing lung cancer resection at CCF 1998– 2002	Persistent AF, lung transplant, prior lung resection	N/A	N/A	Postop AF in 19% peaking d 2	Male sex (p=0.009), older age (p<0.0001), Hx PAF (p=0.0004), CHF (p=0.006), and right pneumonectomy predicted postop AF	N/A	Retrospective, outcomes not assessed
Amar D, et al., 2002 (2) (160) <u>11818768</u>	To determine incidence and predictors of AF after major noncardiac thoracic surgery	Prospective observational SC cohort	527	527	N/A	All pts undergoing major thoracic surgery 1990– 1999 in sinus rhythm	AF or on AADs	N/A	N/A	Postop AF occurred in 15%; age, preop heart rate, and postop pneumonia or respiratory failure predicted AF	N/A	Age OR: 2.5 (CI: 1.7–3.4; p<0.0001); heart rate >74, OR: 2.3 (95% CI: 1.4–3.8; p<0.0007); pneumonia OR: 3.2 (95% CI: 1.5– 6.7; p<0.0021)	Limited to noncardiac thoracic surgery
Amar D, et al., 2005 (161) <u>16304294</u>	To determine whether statin use is associated with lower risk of postop AF after noncardiac thoracic surgery	Prospective observational SC cohort	131	131	N/A	Pts undergoing major lung or esophageal surgery age ≥60	AF or taking AADs or steroids	N/A	N/A	Postop AF in 29%, peak at 70 h; statin use associated with lower risk of AF, but unrelated to CRP or IL-6	N/A	Statin use OR: 0.38 (p=0.025)	Small size, limited to noncardiac thoracic surgery
Amar D, et al., 2012 (162) <u>22841166</u>	To determine whether BNP levels are associated with POAF after noncardiac thoracic surgery	Prospective observational SC cohort	415	415	N/A	Pts undergoing major lung or esophageal surgery age ≥60	AF or taking AADs or steroids	N/A	N/A	POAF in 16%; age, male sex, BNP>30 predicted POAF	N/A	Age OR: 1.28 per 5 y (95% CI: 1.01–1.61; p=0.04); male OR: 2.16 (95% CI: 1.12–4.17; p=0.02); BNP>30	Small size, limited to noncardiac thoracic surgery

												pg/mL OR: 4.52 (95% CI: 2.19– 9.32; p<0.0001)	
Balser JR, et al., 1998 (163) <u>9821992</u>	To compare outcome of post –SVA pts treated with beta blocker vs. CCB	Prospective RCT	63	Esmolol -28	Diltiazem - 27	Pts in ICU with postop SVA	Shock, preop permanent SVA	Esmolol IV	Diltiazem IV	Conversion to sinus: Esmolol 59% vs. Diltiazem 33%	N/A	p<0.05	Small sample size, limited to surgical pts in the ICU
Bhave PD, et al., 2012 (1) (164) <u>23194493</u>	To define the incidence of POAF and its impact on outcomes after major noncardiac surgery	Retrospective review of administrative data from 375 hospitals over 1 y period	370,447	370,447	N/A	Pts >18 y of age undergoing noncardiac surgery in 1 of 375 hospitals in database in 2008	N/A	N/A	N/A	POAF in 3%. Older age and CHF predictive. Black race, statin. ACE- I/ARB use protective. Mortality, LOS, and cost higher for POAF group	N/A	Mortality adjusted OR: 1.68 (95% CI: 1.52–1.86; p<0.001); LOS +37% (95% CI: 34%–41%; p<0.001); cost +5,900 (95% CI: 5,400–6,400; p<0.001)	Administrative data
Bhave PD, et al., 2012 (165) <u>21907173</u>	To examine association of statin use with POAF after noncardiac surgery	Retrospective cohort	370,447	79,871 (statin)	290,576 (no statin)	Pts >18 y of age undergoing noncardiac surgery in 1 of 375 hospitals in database in 2008	N/A	Periop statin used	No periop statin	POAF 2.6% in statin users vs. 3.0% in nonstatin users	N/A	Adjusted OR: 0.74 (Cl: 0.57– 0.95; p=0.021)	Administrative data, retrospective nonrandomized design
Borgeat A, et al., 1991 (166) <u>1903918</u>	To compare use of IV flecainide vs. IV digoxin to prevent POAF	RCT	30	15	15	Pts undergoing noncardiac thoracic surgery	N/A	IV flecainide periop	IV digoxin periop	POAF 7% (flecainide) vs. 47% (digoxin)	N/A	p<0.05	Very small study, IV use only, digoxin is poor comparator, not blinded
Brathwaite D, et al., 1998 (167) <u>9726731</u>	To evaluate incidence and outcomes of POAF after noncardiac nonthoracic surgery	Prospective observational SC cohort	462	462	N/A	Consecutive pts admitted to surgical ICU after noncardiac- nonthoracic surgery	Thoracic surgery or chest tube insertion	N/A	N/A	POAF in 10.2%. Mortality with POAF 23% vs. 4% without POAF; LOS 8 d vs. 2 d	N/A	p<0.05 for both	Limited to surgical ICU pts, clustered analysis of atrial arrhythmias
Cardinale D, et al., 1999 (168) <u>10585066</u>	To evaluate incidence and outcomes of POAF after lung cancer surgery	Prospective observational SC cohort	233	233	N/A	Consecutive pts undergoing surgery for lung cancer	Preop AF or AAD use	N/A	N/A	POAF in 12%. No difference in mortality or LOS	N/A	p=NS	SC, single type of thoracic surgery
Christians KK,	To estimate	Retrospective	13,696	13,696	N/A	All pts	Preop AF,	N/A	N/A	POAF in 0.37%. 30-	N/A	N/A	Retrospective

et al., 2001 (169) <u>11839344</u>	incidence of POAF in large cohort of pts undergoing noncardiac nonthoracic surgery	SC cohort				undergoing any noncardiac nonthoracic surgery over 2 y period in SC	thoracic surgery, PE			d mortality 12% in POAF Group.			design, use of ICD-9 code for diagnosis of POAF, limited statistical analysis
Ojima T, et al., 2013 (170) <u>23674202</u>	To evaluate incidence and outcomes of POAF after esophageal surgery	N/A	207	207	N/A	Consecutive pts undergoing transthoracic esophagectomy over 6 y by single surgeon	Preop AF, concomitant lung/laryngeal surgery, palliative surgery	N/A	N/A	POAF in 9.2% associated with use of ileocolon conduit and postop heart rate >100	N/A	lleocolon use adjusted OR: 13.6 (p=0.0023); heart rate >100 beats/min adjusted OR: 18.4 (p=0.0004)	SC, single surgeon, single type of surgery
Oniatis M, et al., 2010 (171) <u>20667313</u>	To determine risk factors for POAF in pts undergoing lung cancer surgery	Interrogation of STS database	13,906	13,906	N/A	Consecutive pts entered into STS database 2002–2008 for lung cancer surgery	N/A	N/A	N/A	POAF in 12.6%; predictors include pneumonectomy, older age, bilobectomy, male sex, higher cancer stage; black race protective	30-d mortality higher in POAF (5.6% vs. 1.6%, p<0.0001); LOS longer in POAF (8 d vs. 5 d; p<0.0001)	Pneumonectomy OR: 2.04 (CI: 1.58–2.64; p<0.0001); age OR: 1.81 per 10 y (CI: 1.69–1.93; p<0.0001); bilobectomy OR: 1.67 (CI: 1.30– 2.14; p<0.0001); male sex OR: 1.60 (CI: 1.40– 1.83; p<0.0001), clinical stage II+ OR: 1.28 (CI: 1.07–1.52; p=0.006), black race OR: 0.62 (CI: 0.45–0.85; p=0.003)	N/A
Polanczyk CA, et al., 1998 (157) <u>9729180</u>	To determine incidence and predictors of SVA after noncardiac surgery	Prospective SC cohort	4,181	4,181	N/A	Pts ≥50 undergoing nonemergent noncardiac surgery	Rhythm other than sinus	N/A	N/A	SVA in 7.6%	Older age, male sex, valvular disease, CHF, type of surgery were predictors	N/A	N/A
Riber LP, et al., 2012 (172) <u>22516832</u>	To determine whether periop amiodarone reduces POAF	RCT	254	122	120	Pts >18 y of age undergoing lobectomy for lung cancer	Preop AF, heart rate <40 beats/min, LQT, hypotension	Amio 300 mg IV then 600 mg by mouth twice	Placebo	Time to AF (9% vs. 32)	Time to symptomatic AF (3% vs. 10%)	p=0.001 × 2	N/A

	after lung cancer surgery							daily for 5 d					
Tisdale JE, et al., 2009 (173) <u>19699916</u>	To determine whether periop amiodarone reduces POAF after pulmonary resection	RCT	130	65	65	Adult pts undergoing lung resection	Preop AF, heart rate <50 beats/min, on AAD, LQT, hypotension	Amio IV load 24 h then 400 mg twice daily for 6 d	Usual care	POAF requiring treatment (13.8% vs. 32.3%)	LOS	p=0.02	No placebo control, not blinded
Tisdale JE, et al., 2010 (174) <u>20381077</u>	To determine whether periop amiodarone reduces risk of POAF after esophagectomy	RCT	80	40	40	Adult pts undergoing esophagectomy	Preop AF, heart rate <50 beats/min, on AAD, LQT, hypotension	Amio IV for 96 h	Usual care	POAF requiring treatment (15% vs. 40%)	LOS	p=0.02	No placebo control, not blinded
Vaporciyan AA, et al., 2004 (173, 175) <u>15001907</u>	To determine risk factors for POAF in pts undergoing thoracic surgery	Prospective SC observational cohort	2,588	2,588	N/A	Adult pts undergoing resection of lung, esophagus, chest wall, or mediastinal mass >5-y period at MD Anderson	N/A	N/A	N/A	POAF in 12.3%	Male sex, older age, more extensive resection were significant predictors	N/A	N/A

AAD indicates antiarrhythmic drug; ACE-I/ARB, Angiotensin-converting enzyme/ angiotensin receptor blockers; AF, atrial fibrillation; AV, atrioventricular; BNP, B-type natriuretic peptide; CCB, calcium channel blocker; CCF, congestive cardiac failure; CHF, congestive heart failure; CI, confidence interval; CRP, c-reactive protein; HR, hazard ratio; Hx, history; ICD-9, international classification of diseases ninth revision; ICU, intensive care unit; IL, interleukin; IV, intravenous; LOS, length of stay; LQT, Long QT Syndrome; n, subgroup of N; N/A, not applicable; NS, not significant; NSVT, nonsustained ventricular tachycardia; OR, odds raio; PAC, premature atrial contraction; PAF, paroxysmal atrial fibrillation; PE, pulmonary embolism; STS, Society of Thoracic Surgeons; SVA, supraventricular arrhythmia; SVT, supraventricular tachycardia; periop, perioperative; POAF, post-operative atrial fibrillation; postop, postoperative; preop, preoperative; pts, patients; and PE, pulmonary embolism; RCT, randomized controlled trial; SC, single center; and VT, ventricular tachycardia.

Data Supplement 26. Perioperative Management of Patients With CIEDs (Section 6.4)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Po	pulation	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Cheng A, et al., 2008 (176) 18307631	To determine the frequency of PPM or ICD malfunction	Prospective observational single-center cohort	92	92	N/A	Adult pts with PPM or ICD >1 mo undergoing	Unwilling to give informed consent	All pts' CIEDs programmed to detect tachvarrhythmia	None	EMI seen in 5 PPMs and no ICDs; no permanent	No major device malfunctions; 1 pacemaker near ERI reset: no	N/A	N/A	Small sample size, observational only

	from periprocedural electrocautery					noncardiac surgery or endoscopy with electrocautery or ultrasound		and interrogated before and after surgery		damage to any device	complications related to CIED			
Fiek M, et al., 2004 (177) <u>15009852</u>	Evaluate prevalence of EMI in pts with ICD undergoing noncardiac surgery	Prospective observational single-center cohort	33	N/A	N/A	Pts undergoing surgery with ICD	None	None	None	No EMI detected	No adverse effects on ICD	N/A	N/A	Retrospective observational design
Hauser RG, et al., 2004 (178) <u>15851191</u>	To review reports of deaths to FDA associated with ICD failure to determine cause	Retrospective observational	212	N/A	N/A	Deaths associated with ICD failure reported to FDA database 1996–2003	N/A	N/A	N/A	11 deaths occurred in pts with tachytherapies turned off —3 documented to have been inactivated prior to elective surgery	N/A	N/A	N/A	Study relies upon voluntary reporting of events to FDA, so likely underestimates incidence
Mahlow WJ, et al., 2013 (179) <u>23252749</u>	To determine whether an institutional protocol for periop CIED management would be associated with a reduction in the amount of device reprogramming without increase in complications	Retrospective single-center cohort	379	197	179	Consecutive pts undergoing surgery requiring anesthesia before and after new PACED-OP protocol	None stated	PACED-OP institutional protocol, which standardized recommendation s for periop CIED management	CIED pts undergoing surgery before protocol started	Percent of pts needing preop reprograming— decreased from 42%–16%	No major adverse events in either group. 3% preintervention vs. 2.2% postinterventions required adjusting sensing or output	N/A	OR 0.26 [0.15– 0.44]; p<0.001 (efficacy) HR/OR 0.55–1.1; p>0.1 (safety)	No randomization, not performed prospectively
Matzke TJ, et al., 2006 (180) <u>16970697</u>	Evaluate effect of electrocautery during dermatological surgery on	Retrospective single-center cohort	186	N/A	N/A	Consecutive pts with CIEDs undergoing dermatologic surgery with	None	None	None	No CIED malfunction	No adverse effects related to CIED	N/A	N/A	Retrospective observtional design

	CIEDs					electrocautery 2001–2004								
Pili-Fluory, et al., 2008 (181) <u>18272014</u>	To evaluate the periop outcome of pacemaker pts undergoing noncardiac surgery	Prospective observational single-center cohort	65	N/A	N/A	All adult pacemaker pts undergoing noncardiac surgery or procedures under general or regional anesthesia	Age <18 y, unwilling to consent	None	None	No EMI described, no adverse events related to PPM	No pacemaker malfunction	11% of pts had some pre-op problem with pacemaker requiring reprogrammi ng	N/A	Small sample size, observational only, not all devices interrogated, not programmed to detect EMI

CIED indicates cardiac implantable electronic device; EMI, Electromagnetic interference; ERI, elective replacement interval; FDA, Food and Drug Administration; ICD, implantable cardioverter-defibrillator; N/A, not available; OR, odds ratio; PACED-OP, Program for All-Inclusive Care of the Elderly-Outpatient; periop, perioperative; PPM, permanent pacemaker; and pts, patients.

Data Supplement 27. Choice of Anesthetic Technique and Agent (Section 7.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Po	pulation	Study Intervention	Study Comparator		Endpoir	nts	P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Barbosa FT, et al., 2013 (182) <u>23897485</u>	Effect of epidural /spinal anesthesia for lower limb revascularization compared with other types of anesthesia (general anesthesia)	Meta-analysis of RCTs (Cochrane review)	696	417	279	Adults (≥18 y) undergoing lower limb revascularization with neuraxial anesthesia (spinal or epidural)	N/A	Neuraxial anesthesia	General anesthesia	No definitive difference mortality, stroke, MI, nerve dysfunction, lower limb amputation	N/A	Reduction in pneumonia. Otherwise no difference in- hospital stay, postop cognitive dysfunction, postop wound infection, postop anesthesia recovery room issues (nausea/vomiting/ tremor/supplemental oxygen dependence/ hypotension/HTN/ dysrhythmia), pt satisfaction, pain	OR: 0.37 favoring decrease in pneumonia in pts receiving neuraxial anesthesia (95% CI: 0.15–0.89)	Risk of pneumonia was only analyzed in 2 studies

												score, transfusions,		
												urinary retention,		
												distance poston		
												rest pain in limb		
Park WY, et al., 2001 (183) <u>11573049</u>	Test whether epidural anesthesia and postop epidural analgesia decrease morbidity and mortality after intra-abdominal surgical procedures	Randomized, controlled	984	489	495	≥21 y old and undergoing abdominal aortic surgery, gastric surgery, biliary surgery, or colon surgery	<21 y old, female, ASA Class I/II/V, confused, emergency, MI within past 6 mo, abdominal procedure within past 3 mo, any prior abdominal aortic surgery, receiving chemotherapy or immunosuppre ssives other than steroids, tracheostomy, preop intubation, hypersensitivity to drugs, contraindicatio n to epidural, surgeon/ anesthesiologis t preference for one anesthetic	Epidural and general anesthesia plus postop epidural morphine	General anesthesia plus postop systemic opioids	Death, MI, CHF, persistent VT, complete AV block, severe hypotension, cardiac arrest, PE, respiratory failure, cerebral event, renal failure; Decrease incidence of MI, respiratory failure and stroke in subgroup of pts who underwent abdominal aortic procedures with epidural. Otherwise no difference in primary or	N/A	claudication distance, postop rest pain in limb. Pneumonia, sepsis, Gl bleed, new angina, epidural hematoma, respiratory depression, respiratory arrest, reoperation for complications. For results see primary endpoint heading.	p 0.03 for MI favoring aortic surgery pts with epidural	Gender-specific study
										secondary endpoints in				
										aroup of				
										abdominal				
										surgery pts.				
Norris EJ,	Determine effect	Randomized,	168	Neuraxial	GA+ PCA	Pts undergoing	Procedure	See	GA + PCA	No	N/A	No difference in	N/A	Underpowered
et al.,	ot epidural	controlled		intraop +	postop =37	abdominal aortic	requiring aortic	aforemention		difference in		medical costs,		study; study

2001 (184) <u>11684971</u>	anesthesia+ general anesthesia vs. general anesthesia + intravenous opioid			PCA postop =39; Neuraxial + GA+ epidural postop =46, GA + epidural postop =38		reconstructive surgery	cross clamp, contraindicatio n to epidural anesthesia, previous surgery or severe deformity of thoracolumbar spine, opioid dependence, major surgery within 14 d prior, pt refusal, neurologic disease affecting thorax or lower	ed groups		LOS		hospital mortality, major cardiac morbidity		halted due to ethical concerns; monitoring committee terminated pt recruitment
Guarracin o F, et al., 2006 (185) <u>16884976</u>	Determine if volatile anesthetics were associated with a decrease in myocardial damage	Multicenter, randomized, controlled	112	57 who received desflurane (volatile anesthetic)	55 pts who received propofol (total IV anesthetic)	Off-pump coronary artery bypass pts	MI within 6 wk of surgery, valvular insufficiency, acute CHF, additional surgeries during hospitalization, illicit drug use within 1 mo of surgery, unusual response to an anesthetic	Volatile anesthetic administration	Propofol anesthetic administration	Myocardial damage as measured by postop cTnl. Volatile anesthetic was associated with a significant reduction in median peak cTnl (p<0.001)	N/A	Prolonged hospitalization increased in total intravenous anesthesia group (p=0.005)	p<0.001 favoring volatile anesthetics for lower postop cTnI as a surrogate for decreased myocardial damage; p=0.005 favoring volatile anesthetics for reduced hospitalizati on	Used biomarker release as an indicator for myocardial injury; other data such as incidence of postop AF not collected
Zangrillo A, et al., 2011 (186) <u>21872490</u>	Compare the effects of total intravenous anesthesia to sevoflurane on postop cTnI after noncardiac	Single center, randomized, controlled. Blinded to all study personnel other than	88	44 pts receiving sevoflurane	44 pts received propofol (TIVA)	Pts undergoing elective lung surgery pts or peripheral revascularization	Unusual prior anesthetic response; current use of sulfonylurea theophylline, or allopurinol	Volatile anesthetic (sevoflurane) administration	TIVA (propofol)	Myocardial damage as measured postop cTnl; no statistical difference between	N/A	N/A	p=0.6	Pt hx was not extensively taken, so may not have looked at a highly "at risk" group for myocardial

©American College of Cardiology Foundation and American Heart Association, Inc.

	surgery	anesthesiolog ists who did not participate in the analysis								volatile anesthetic group and TIVA group				ischemia, thus diminishing the potential to detect a difference if it did exist. No pt in the study had a periop MI or ischemia. Small sample of pts. Underpowered.
Landoni G, et al., 2009 (187) <u>23439516</u>	To evaluate the effects of volatile anesthetics in myocardial protection in noncardiac surgery	Meta-analysis of randomized trials	79 trials, 6,219 pts	3,451 pts receiving either desflurane or sevoflurane (volatile anesthetics)	2,768 pts receiving TIVA	Pts undergoing noncardiac surgery	N/A	Volatile anesthetic (sevoflurane or desflurane) administration	TIVA (propofol)	Periop MI and death; no primary endpoint was observed in any of the studies	N/A	N/A	No infarctions or deaths reported in any of the studies examined in either the volatile anesthetic pts or the TIVA pts	No author reported any postop MI or death in their study populations. No report of any significant cardiac event in any study. Authors of the meta-analysis reported difficulty conducting meta-analysis because no author reported pt outcome. Poor quality studies. All studies were single center design.
Conzen PF, et al., 2003 (188) <u>14508313</u>	I o evaluate the myocardial protective effects of sevoflurane in pts undergoing OFF PUMP CABG	Randomized, controlled	20	10 pts undergoing OPCAB ≤=2 vessel) receiving sevoflurane	10 pts undergoing OPCAB (≤2 vessel) receiving propofol	Pts with unusual anesthetic response, experimental drug use, severe comorbid disease, prior coronary surgery, EF<30%, sulfonylurea use	N/A	Volatile anesthetic (sevoflurane) administration	IIVA (propofol)	cTNI; significantly lower in pts receiving volatile anesthetics vs. TIVA	N/A	N/A	Significantly higher troponin I levels in TIVA pts (p=0.009)	No deaths, no transmural MI in either group; underpowered to detect clinical cardiac events

Landoni G, et al., 2007 (189) <u>17678775</u>	To evaluate whether or not the cardioprotective effects of volatile anesthetics translate into decreased morbidity and mortality in cardiac surgery pts	Meta-analysis of RCTs	1,922 pts	979 pts with CAB receiving volatile anesthetic (desflurane or sevoflurane)	874 pts with CAB receiving TIVA	N/A	N/A	Volatile anesthetic (sevoflurane or desflurane) administration	TIVA (propofol)	In-hospital MI, in- hospital mortality. Volatile anesthetics were associated with significant reductions in MI (2.4% vs. 5.1%), all- cause mortality (0.4% vs. 1.6%)	N/A	Peak cardiac troponin release, inotrope use, time on mechanical ventilation, ICU LOS, hospital LOS. Volatile anesthetics associated with significant decreased peak troponin release (p=0.001), ICU stay (p=0.001), time to hospital discharge (p=0.005)	Volatile anesthetic reduction in MI p=0.008; volatile anesthetic reduction in mortality p=0.02	Definition of MI as per author; suboptimal RCTs included in the study
Bignami, et al., 2013 (190) <u>22819469</u>	Investigate the cardioprotective properties of isoflurane vs. any comparator in terms of MI and all-cause mortality	Meta-analysis of 37 RCTs	3,539 pts (both cardiac and noncardiac surgery)	N/A	N/A	N/A	N/A	N/A	N/A	Isoflurane reduced mortality in high-quality studies and showed a trend toward reduction in mortality when compared with propofol. Rates of overall mortality and MI were the same when all studies (high quality and otherwise) were considered.	N/A	N/A	p=0.4 for a reduction in mortality p=0.05 for reduction in mortality for isoflurane when propofol was the control group	Important study to demonstrate isoflurane is comparable to other anesthetic drugs with better pharmacokinetic profiles but higher cost and lower potency in terms of incidence of periop MI and death. The studies included had small sample sizes, marked heterogeneity regarding surgery/MI/ length of follow- up. Only 10 of 37 studies had a low risk of bias.

ASA indicates American Society of Anesthesiologists; AV, atrioventricular; CAB, coronary artery bypass; CHF, congestive heart failure; CI, confidence interval; cTnI, cardiac troponin I; EF, ejection fraction; GA, general anesthesia; GI, gastrointestinal; HTN, hypertension; Hx, history; ICU, intensive care unit; LOS, length of stay; MI, myocardial infarction; OPCAB, off-pump coronary artery bypass; N/A, not applicable; OR, odds ratio; PCA, patient-controlled analgesia; PE, pulmonary embolism; postop, postoperative; preop, preoperative; pt, patient; pts, patients; RCT, randomized controlled trial; TIVA, total intravenous anesthesia; and VT, ventricular tachycardia.

Data Supplement 28. Perioperative Pain Management (Section 7.2)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient P	opulation	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% CI:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Nishimori M, et al., 2012 (191) <u>22786494</u>	Assess benefits and harms of epidural analgesia compared with opioid- based analgesia for adult pts undergoing elective abdominal aortic surgery	Meta-analysis of RCTs	15 eligible trials out of 53 trials; 1297 pts	633 pts with epidurals	664 pts receiving systemic opioids	RCTs comparing postop epidural analgesia and postop sysemic opioid based analgesia for electiveabdominal aortic surgery	N/A	N/A	N/A	All cause death, cardiac death, MI, angina, ischemia, arrhythmia, CHF, severe hypotension; respiratory, GI, cerebrovascular, renal, DVT/PE	N/A	Extubation time, pain scores, bowel motility, functionality, ICU stay length, hospital stay length	Event rate of MI was reduced by epidural analgesia (RR; 0.52, CI: 0.29– 0.93); no difference in angina, ischemia, CHF, arrhythmia, heart block)	N/A
Wu CL, et al., 2003 (192) <u>12945019</u>	Assess effects of postop epidural analgesia compared with no postop epidural	Retrospective review of random sample of Medicare beneficiaries who underwent total hip arthroplasty	23,136	2,591 with postop epidural	20,545 without epidural	Medicare pts undergoing total hip arthroplasty	N/A	Postop epidural	No postop epidural	No difference between groups regarding mortality and morbidity: Acute MI, angina, dysrhythmias, HF, pneumonia, PE, DVT, sepsis, acute renal failure, acute cerebrovascular events, paralytic ileus.	N/A	N/A	N/A	Database designed for billing and administratio n, not clinical outcomes research
Matot I, et al., 2003	Assess risk of preop cardiac	Randomized controlled,	68	34	34	≥60 y old with traumatic hip	Pts with contraindication to	Preop epidural	Standard pain relief	Increased preiop cardiac events:	N/A	Postop cardiac	Preop cardiac	Unblinded study; only 1

©American College of Cardiology Foundation and American Heart Association, Inc.

(193) <u>12502992</u>	events in pts with hip fracture who receive preop epidural (local anesthetic + opioid) vs. conventional (opioid) treatment	unblinded				fracture, known or high risk CAD	epidural, allergy to study drugs, LBBB, ?10 h from time of injury to presentation to ED; acute coronary syndrome at presentation		with opioids	combined cardiac death, MI, UA, CHF, new onset AF (20 events vs. 0 events in epidural group)		events are higher in the standard care group. No difference in postop PE, pneumonia	events p=0.01	dose of meperidine; used IM opioid instead of PCA (IV administratio n)
Park WY, et al., 2001 (183) <u>11573049</u>	Test whether epidural anesthesia and postop epidural analgesia decrease morbidity and mortality after intra- abdominal surgical procedures	Randomized, controlled	984	489	495	≥21 y old and undergoing abdominal aortic surgery, gastric surgery, biliary surgery, or colon surgery	<21 y old, female, ASA Class I/II/V, confused, emergency, MI within past 6 mo, abdominal procedure within past 3 mo, any prior abdominal aortic surgery, receiving chemotherapy or immunosuppresses other than steroids, tracheostomy, preop intubation, hypersensitivity to drugs, contraindication to epidural, surgeon/anesthesiolo gist preference for 1 anesthetic	Epidural and general anesthesia plus postop epidural morphine	General anesthesia plus postop systemic opioids	Death, MI, CHF, persistent Vtach, complete AV block, severe hypotension, cardiac arrest, PE, respiratory failure, cerebral event, renal failure; Decrease incidence of MI, respiratory failure and stroke in subgroup of pts who underwent abdominal aortic procedures with epidural. Otherwise no difference in primary or secondary endpoints in combined group of abdominal surgery pts.	N/A	Pneumonia, sepsis, GI bleed, new angina, epidural hematoma, respiratory depression, respiratory arrest, reoperation for complications. For results see primary endpoint heading.	p0.03 for MI favoring aortic surgery pts with epidural	Gender- specific study
Liu LL, et al., 2012 (50) <u>12133011</u>	Determine if there is an association between NSAID use and postop MI	Retrospective EMR from large orthopedic hospital (Hospital for Special	10,873	9,831 (NSAIDs)	1,042 (no NSAIDs)	Pts undergoing total hip arthroplasty at a single center	N/A	NSAID administration	No NSAID administratio n	No increase in postop MI with NSAID use	N/A	N/A	RR: 0.95, 95% Cl: 0.5–1.8	Single center, healthy population? (mortality 0%)

S	Surgery, NY)			
P	Propensity-			
m	natched			
C	controls			

AF indicates atrial fibrillation; CAD, coronary artery disease; CHF, congestive heart failure; CI, confidence interval; DVT, deep vein thrombosis; ED, emergency department; EMR, electronic medical records; GI, gastrointestinal; HF, heart failure; ICU, intensive care unit; IV, intravenous; LBBB, left bundle-branch block; MI; myocardial infarction; N/A, not applicable; NSAID, nonsteroidal anti-inflammatory drugs; PCA, patient-controlled analgesia; PE, pulmonary embolism; postop, postoperative; pt, patient; pts, patients; preop, preoperative; RCT, randomized controlled trial; RR, relative risk; and UA, unstable angina.

Data Supplement 29. Prophylactic Intraoperative Nitroglycerin (Section 7.3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Po	pulation	Study Intervention	Study Comparator		Endpoints		P Values, OR: HR: RR & 95% Cl:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Dodds TM, et al., 1993 (194) <u>8466005</u>	To determine the effect of prophylactic NTG on the incidence of myocardial ischemia in pts with either documented CAD or a high likelihood of clinically silent CAD who undergo noncardiac surgery	Randomized, placebo- controlled; unnblinded to anesthesiologists, blinded to cardiologist reading the Holter monitor	45	23	22	Hx of MI, angina, >70% narrowing of an epicardial artery, those undergoing vascular surgery for atherosclerotic disease	LBBB, WPW, nonsinus rhythm, pre-existing ST depression ≥1mm	NTG 0.9 mcg/kg/min titrated to maintain heart rate and systolic BP within 20% baseline; continued until 30 min following surgery	Placebo infusion	Myocardial ischemia as detected by Holter monitor	N/A	N/A	No difference in ischemia between pts receiving IV NTG or placebo, p=0.93; 7/23 controls, 7/22 NTG pts	Only 1 dosage of NTG; anesthesiologists were unblinded
Fusciardi J, et al., 1986 (195) <u>3085552</u>	To determine if NTG infusion during airway instrumentation decreased the incidence of myocardial ischemia in pts with chronic	Randomized	46	20	26	Angina	LBBB, MI within prior 6 mo	NTG 0.9 mcg/kg/min	Fentanyl infusion alone	Myocardial ischemia as detected by 1mm ST depression on ECG lead V;	N/A	N/A	Reduced ischemia in pts receiving NTG (p<0.05)	Unblinded, no placebo control; small study; rudimentary analysis

	stable angina					1				PCWP>18				
Thomson IR, et al., 1984 (196) <u>6435481</u>	To determine the effect of prophylactic NTG on the incidence of intraoperative myocardial ischemia in pts with CAD undergoing CABG	Randomized, placebo controlled	20	9	11	Elective CABG	Abnormal leads II and V5 at baseline	NTG 0.5 mcg/kg/min	Placebo	Myocardial ischemia as detected by 1mm ST segment depression	N/A	N/A	No significant difference in incidence of ischemia between the two groups	Randomized study population was not balanced with regard to treatment arms: Nitroglycerin group received significantly more bypass grafts, suggesting a higher burden of CAD which may increase the incidence of ischemia; beta blocker withheld the night before surgery in both groups

BP indicates blood pressure; CABG, coronary artery bypass graft; CAD, coronary artery disease; ECG, electrocardiogram; HR, hazard ratio; hx, history; IV, intravenous; LBBB, left bundle-branch block; MI, myocardial infarction; N/A, not applicable; NTG, nitroglycerin; PCWP, pulmonary capillary wedge pressure; pts, patients; ST, stent thrombosis; and WPW, Wolff–Parkinson–White.

Data Supplement 30. Maintenance of Body Temperature (Section 7.5)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Population		Study Intervention	Study Comparator		Endpoints			Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results	P Values, OR: HR: RR & 95% Cl:	
Sumer BD, et al., 2009 (197) <u>19620590</u>	To determine if intraoperative hypothermia correlates with periop complications	Retrospective medical record chart review	136	None	None	Any pt undergoing head and neck surgery for tumors that required a free flap	None	None	Pts with temp ≤35 degrees Celsius vs. pts with temp >35 Celsius as measured by urinary catheter	Correlation of intraoperative hypothermia with postop complications (within 3 wk of surgery): Pneumonia, wound infections, other infections; flap loss, hematoma, fistula, wound breakdown, CSF leak, cardiac	N/A	Correlation of other study variables with postop complications	OR: 5.12; 95% CI: 1.317–19.917; p=0.002. Examining only local wound complications and infectious complications yielded same results (OR: 5.075; CI: 1.363–18.896).	Retrospective review from single institution; no documentation of periop antibiotic administration, smoking Hx, vasopressor use or preop radiation to the head and neck
										complications, donor site breakdown, DVT, death; This study showed that hypothermia was independently associated with a significant increase in postop complications in pts undergoing head and neck cancer surgery				
---	---	--	-----	-----	-----	--	---	--	--	--	-----	---	--	---
Kurz A, et al., 1996 (198) <u>8606715</u>	To determine if intraoperative hypothermia increases the susceptibility to surgical wound infection and increases hospitalization	Randomized, double-blind	400	96	104	18–80 y of age undergoing elective colorectal resection for cancer or inflammatory bowel disease	Corticosteroid or immunosuppressive therapy within 4 wk of surgery; recent fever or infection; bowel obstruction; malnutrition (albumin <3.3 g/dL, wbc<2500 cell/mL; >20% weight loss)	Fluid warmer activation; forced-air cover at 40 degrees Celsius to maintain core temp near 36.5 degrees Celsius (tympanic membrane temp)	No fluid warming; forced air warmer at ambient temperature to 34.5 degrees Celsius	Postop wound infections increased in hypothermia group (6/104 in normothermia group vs. 18/96 in hypothermia group); d of hospitalization increased in hypothermia group (12 d in normothermia group vs. 14.7 in hypothermia group	N/A	Collagen deposition increased, d to first solid food decreased, d to suture removal decreased in normothermia group	p value for infection =0.009; OR: 4.9 (1.7–14.5)	Pts with hypothermia required more blood transfusion which may have confounded the results; smokers had a very high rate of complications, but were evenly distributed between the 2 groups
Frank SM, et al.,1997 (199) <u>9087467</u>	To assess he relationship between body temperature and cardiac morbidity during the periop period	Randomized; cardiac outcomes double-blind	300	142	158	≥60 y of age undergoing peripheral vascular, abdominal, or thoracic surgery AND admitted to the ICU and had CAD or high risk of CAD	LBBB, LVH with strain, digitalis effect paced, preop hyper/ hypothermia, Raynaud, thyroid disorders	Upper or lower body forced air warmer full body warmer first 2 h postop adjusted to maintain temp at or near 37 degrees Celsius	No forced air warmer	Cardiac events (MI, UA, ischemia, arrest within 24 h postop); Significant increase in ECG event and morbid cardiac event (ischemia/UA, arrest, infarction) in hypothermic group	N/A	No difference in intraoperative cardiac events	Major cardiac event p=0.02;ECG event p=0.02; no significant difference in postop ischemia	Low overall incidence in postop ischemia (7%)

Nguyen HP, et al., 2010 200) 20571361	1,000	499	501	Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery	Intubated at the time of enrollment	Hypothermia (esophageal temp 33 degrees Celsius)	Normothermia 36.5 degrees Celsius	No increased incidence of any single or composite cardiovascular event as defined intraoperatively and postoperatively: hypo/HTN unintended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting. Hypothermia does not increase the incidence of cardiovascular events, at least in pts with a low preop risk of CAD	N/A	N/A	Any cardiovascular event p=0.11, OR: 1.24 (Cl: 0.96– 1.61)	Post hoc study; low incidence of many of the cardiovascular events
	Randomized; cardiac outcomes double-blind	Randomized; 1,000 cardiac outcomes double-blind	Randomized; 1,000 499 cardiac outcomes double-blind	Randomized; cardiac outcomes double-blind 1,000 499 501 Joint Comes double-blind Image: state of the state of t	Randomized; cardiac outcomes double-blind 1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery	Randomized; cardiac outcomes double-blind 1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment	Randomized; cardiac outcomes double-blind 1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 33 degrees Celsius)	Randomized; cardiac outcomes double-blind 1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 33 degrees Celsius Normothermia 36.5 degrees Celsius	Randomized; cardiac outcomes double-blind 1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 33 degrees Celsius) No increased incidence of any single or composite cardiovascular event as defined intraoperatively and postoperatively instended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting.	Randomized; cardiac outcomes double-blind1,000499501Pts with subarchoid hemorrhage who undergo cerebral aneurysm surgeryIntubated at the time of enrollmentHypothermia (esophagal degrees Celsius)Nomothermia St. 5 degrees CelsiusNo increased incidence of any somposite cardiovascular event as defined intraoperatively; hypo/HTN unintended, vasopressor use, ischemia or inifarction, cardiogenic schem, VT, CPR, pacement, angioplasty and stenting.N/A	Randomized; cardiac outcomes double-blind1,000499501Pis with subarachnoid hemorhage who undergo cerebral aneurysm surgeryIntubated at the time of enrollmentHypothermia (esophageal (esophageal Celsius)Nomorthermia single or composite cardiovascular event as defined intraoperatively hypothermia down outcomesN/AN/A	Randomized; cardiac outcomes double-blind1499501Pis with subarachnoid hemorhage who undergo cerebral aneurysm surgeryIntubated at the time of enrolimentHypothermia (esophageal (esophageal (estiva))N/AN/AAny cardiovascular event p=0.11.0 R: 0.124 (CI: 0.96- 1.24 (CI: 0.96- 1.61)double-blindIntubated at the time of enrolimentHypothermia (esophageal degreesN/AN/AAny cardiovascular event p=0.11.0 R: 0.124 (CI: 0.96- 1.61)double-blindIntubated at the time of enrolimentHypothermia (esophageal degreesN/AN/AAny cardiovascular event p=0.11.0 R: 0.124 (CI: 0.96- 1.61)double-blindIntubated at the time of enrolimentHypothermia (esophageal degreesN/AN/AAny cardiovascular event p=0.11.0 R: 0.124 (CI: 0.96- 1.61)double-blindIntubated at the time of enrolimentHypothermia (esophageal degreesN/AN/AN/AAny cardiovascular event p=0.11.0 R: 0.124 (CI: 0.96- 1.61)double-blindIntubated at the time of enrolimentIntubated at the time of enrolimentHypothermia infracton, cardiovascular event set time of enroliment time of enrolimentN/AN/AAny cardiovascular event p=0.11.0 R: 0.104double-blindIntubated at the time of enroliment sugeryIntubated at the time of enroliment time of enroliment time of enroliment time of enroliment time of enroliment time of enroliment oces not increase the incidenee of cardiovascular events at least in performant
To determine if periop hypothermia increased SAH-related cardiac abnormalities		1,000	1,000 499	1,000 499 501	1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery	1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment 1 <t< td=""><td>1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment aneurysm surgery Hypothermia (esophageal temp 33 degrees Celsius)</td><td>1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment ime of enrollment Hypothermia (esophageal temp 33 degrees Celsius) 1</td><td>1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 33 degrees Celsius) Normothermia 36.5 degrees Celsius No increased incidence of any single or composite cardiovascular event as defined intraoperatively and postoperatively: hypo/HTN unintended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting. Hypothermia does not increase the incidence of any single or</td><td>1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 33a Nom increased (softgeres) No increased incidence of any single or composite cerdiovascular event as defined intraoperatively and postoperatively hypo/HTN unintended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting. N/A</td><td>1.000 499 501 Pis with subarachoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the imp 33 degrees Celsius) Normothermia (esophageal celsius) No increased incidence of any single or composite cardiovascular event as defined intraoperatively and postoperatively: hypo/HTN unintended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting. Hypothermia does not increase the incidence of cardiovascular events, at least in pts with a low preor pisk of CAD N/A N/A</td><td>1.000 499 501 Pis with subarachnoid hemorthage who undergo cereterial aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 30 degrees N/A N/A Any cardiovascular event p=0.11, OR: 1.24 (cl: 0.96- 1.51) 2 Genes cereterial aneurysm Soft degrees celsius) Soft degrees celsius N/A N/A Any cardiovascular event as defined intraoperatively and postoperatively unintended, vasopressor use, ischemia or infarction, cardiogenic N/A N/A Any cardiovascular event as defined intraoperatively and postoperatively and astenting and poptoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and</td></t<>	1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment aneurysm surgery Hypothermia (esophageal temp 33 degrees Celsius)	1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment ime of enrollment Hypothermia (esophageal temp 33 degrees Celsius) 1	1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 33 degrees Celsius) Normothermia 36.5 degrees Celsius No increased incidence of any single or composite cardiovascular event as defined intraoperatively and postoperatively: hypo/HTN unintended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting. Hypothermia does not increase the incidence of any single or	1,000 499 501 Pts with subarachnoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 33a Nom increased (softgeres) No increased incidence of any single or composite cerdiovascular event as defined intraoperatively and postoperatively hypo/HTN unintended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting. N/A	1.000 499 501 Pis with subarachoid hemorrhage who undergo cerebral aneurysm surgery Intubated at the imp 33 degrees Celsius) Normothermia (esophageal celsius) No increased incidence of any single or composite cardiovascular event as defined intraoperatively and postoperatively: hypo/HTN unintended, vasopressor use, ischemia or infarction, cardiogenic shock, CHEF, pulmonary edema, VF, VT, CPR, pacemaker placement, angioplasty and stenting. Hypothermia does not increase the incidence of cardiovascular events, at least in pts with a low preor pisk of CAD N/A N/A	1.000 499 501 Pis with subarachnoid hemorthage who undergo cereterial aneurysm surgery Intubated at the time of enrollment Hypothermia (esophageal temp 30 degrees N/A N/A Any cardiovascular event p=0.11, OR: 1.24 (cl: 0.96- 1.51) 2 Genes cereterial aneurysm Soft degrees celsius) Soft degrees celsius N/A N/A Any cardiovascular event as defined intraoperatively and postoperatively unintended, vasopressor use, ischemia or infarction, cardiogenic N/A N/A Any cardiovascular event as defined intraoperatively and postoperatively and astenting and poptoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and postoperatively and

CAD, coronary artery disease; CPR, cardio-pulmonary resuscitation; CHEF, contour-clamped homogeneous electric field gel; CI, confidence interval; CSF, cerebrospinal fluid; DVT, deep vein thrombosis; ECG, electrocardiogram; hx, history; HTN, hypertension; ICU, intensive care unit; LBBB, left bundle-branch block; LVH, left ventricular hypertrophy; MI, myocardial infarction; periop, perioperative; postop, postoperative; preop, preoperative; pt, patient; pts, patients; UA, unstable angina; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Data Supplement 31. Perioperative Use of Pulmonary Artery Catheters (Section 7.7)

Study Name, Author, Year	Aim of Study	Study Type	Study Size (N)	Study Intervention Group (n)	Study Comparator Group (n)	Patient Population		Study Intervention	Study Comparator	Endpoints			P Values, OR: HR: RR & 95% Cl:	Study Limitations & Adverse Events
						Inclusion Criteria	Exclusion Criteria			Primary Endpoint (efficacy) and Results	Safety Endpoint and Results	Secondary Endpoint and Results		
Sandham JD, et al., 2003 (201) <u>12510037</u>	RCT of PAC use in high-risk surgical pts	Prospective	1,994	997	997	ASA Class III/IV risk, ≥60 y old, scheduled for urgent or elective abdominal, thoracic, vascular or hip fracture surgery	N/A	PAC use	No PAC use, although a central venous catheter was permitted	In-hospital mortality	N/A	6 mo mortality, 12 mo mortality, and in- hospital morbidity	In-hospital mortality (p=0.93)	Increased incidence of pulmonary embolism in the PA catheter arm, 8 vs. 0, p=0.004
Valentine RJ, et al., 1998 (202) <u>9510275</u>	RCT of PAC in aortic surgery	Prospective	120	120	60	Pts undergoing elective abdominal aortic reconstruction	MI w/in 3 mo, CABG within 6 wk, severe aortic/mitral valve disease, overt CHF	PAC use and presurgery hemodynamic optimization	No PAC and hydration	MI, arrhythmias, CHF, acute renal failure, CVA, graft thrombosis, pulmonary insufficiency, death	N/A	Duration of ventilation, ICU stay length, hospital stay length	All p=NS for MI, pulmonary insufficiency, CVA, death	Underpowered
Bender JS, et al., 1997 (203) <u>9339929</u>	RCT of PAC in major elective vascular surgery (infra-renal aortic reconstruction or lower limb revasc)	Prospective	104	51	53	Major elective vascular surgery	Suprarenal cross-clamp, MI w/in 3 mo or UA, overt CHF, CABG within 6 wk, symptomatic aortic or mitral valve disease	PAC use	Radial artery catheter	Not defined (a lot of morbidity outcomes)	N/A	N/A	Postop complications no different between groups	Underpowered

ASA indicates American Society of Anesthesiologists; CABG, coronary artery bypass graft; CHF, congestive heart failure; CVA, cerebrovascular accident; ICU, intensive care unit; MI, myocardial infarction; N/A, not applicable; NS, nonsignificant; PAC, pulmonary-artery catheter; pts, patients; postop, postoperative; RCT, randomized controlled trial; revasc, revascularization; and UA, unstable angina.

Ρ Study Study Values. Study Study Study Name, Aim of Study Study Limitations & OR: HR: Study Type Intervention Comparator Size **Patient Population** Endpoints Author, Year Study Adverse Intervention Comparator (N) RR & Group (n) Group (n) Events 95% CI: Primary Safety Secondary Inclusion Exclusion Endpoint Endpoint Endpoint Criteria Criteria (efficacy) and and Results Results and Results ECG & Garcia S. et ECG and Retrospective 337 N/A N/A Pts Incomplete N/A ECG & Tnl HR for N/A N/A Retrospective al., 2013 Tnl NS mortality with Tnl postop undergoing data, (204) for 30-d prognosis vascular amputations. abnormal 22975335 mortality low-risk ECG/Tnl surgery procedures 2,232 TnT drawn HR: 2.4 TnT and N/A Lost to follow N/A TnT HR for N/A Mortality 3% N/A Van Waes JA. Prospective Intermediate= on POD et al., 2013 MI (universal up within 30 d Tnl: 0.07 postop and high-risk mortality with -0.59 (205) 1,2,3 definition) prognosis surgery pts Tnl elevation 23667270 (hospital stay ug/L, 0.6% >24 h) p<0.01 and 4.2 for Tnl ≥0.6; p<0.01 Shroff GR, et Tnl HR: 4.6 Retrospective Tnl and Retrospective 376 Tnl drawn N/A Renal and None N/A HR for N/A 25% al., 2012 a8 h × 3 mortality with renal/pancreas Tnl >1 postop abnormal Tnl. (206) 8 in-hospital after arriving transplant pts Tnl elevation ng/mL prognosis 22286592 (95% CI: from OR cardiac 2.04events 14.6) TnT 6–12 h 15,133 N/A Devereaux PJ. TnT and Prospective Noncardiac Outpt surgery N/A TnT In-hospital N/A Mortality N/A N/A et al., 2012 postop and surgery >44 y or declined mortality 1.9% MI postop POD 1,2,3 (207) prognosis old, and had consent 22706835 an overnight stay Beattie WS, et Retrospective 51,791 2.1% 30-d HR: 6.5 Compare Tnl N/A Moderate to Same day N/A N/A In-hospital N/A N/A mortality, (5.4 7.9) al., 2012 Tnl high-risk surgery, mortality 11.1% Tnl (208) ordered on noncardiac cardiac for 22961610 mortality a clinical surgery pts elevated >0.7 surgery, transplantation, with Tnl basis vs. mc/L >0.7 regularly eye surgery, and duplicate scheduled post-op procedures N/A OR: 5.0; Redfern G. et Troponin Meta-2,195 Tnl drawn N/A Pts N/A N/A 30-d mortality N/A N/A N/A

Data Supplement 32. Surveillance and Management for Perioperative MI (Section 8.1)

al., 2011 (209) <u>21564046</u>	and 30-d and 180-d outcomes in pts undergoing vascular surgery	analysis				undergoing vascular surgery							95% CI: 2.9–8.8. 30 d mortality with elevated Tnl	
Nagele P, et al., 2011 (210) <u>20886662</u>	TnI and Postop MI and death	Retrospective	378	Tnl elevated	N/A	Head and neck cancer surgery and had Tnl measured	No Tnl measured	N/A	N/A	30-d mortality	N/A	57 pts (15%) had elevated Tnl, 10 pts (2.6%) had MI	OR: 5.8 (0.8 42) 30-d mortality	N/A
Levy M, et al., 2011 (211) <u>21336095</u>	Tnl and postop death	Meta- analysis	3,318	Troponin elevated	N/A	Troponin measured	Poor studies	N/A	N/A	OR: 3.4 (95% CI: 2.2–5.2) 30-d mortality	N/A	5% had periop MI. 30- d mortality 11.6% with periop MI and 2.2% without MI	N/A	Significant heterogeneity in group (I2=56%)
Devereaux PJ, et al., 2011 (212) <u>21502650</u>	Tnl and postop events	Prospective	8,351	Troponin elevated	N/A	Noncardiac surgery >44 y old, and had an overnight stay and at- risk for cardiovascular disease	N/A	N/A	N/A	1.7% had symptomatic MI, 3.3% had asymptomatic MI, and 8.3% had isolated troponin rise	N/A	HR: for death 4.76 with symptomatic MI and 4.0 for asymptomatic MI	N/A	N/A
McFalls EO, et al., 2008 (213) <u>18245121</u>	Tnl and events	Prospective	377	TNI ≥0.1 ug/L	N/A	CARP Trial and samples stored	N/A	N/A	N/A	30-d mortality 9 (p=NS), 1 y mortality significantly higher 20% vs. 4.7%)	N/A	N/A	N/A	N/A

CARP indicates Coronary Artery Revascularization Prophylaxis; CI, confidence interval; DVT, deep vein thrombosis; ECG, electrocardiogram; HR, hazard ratio; MI; myocardial infarction; N/A, not applicable; NS, nonsignificant; POD, postoperative day; pts, patients; TnI, troponin I; TnT, troponin T I.

References

- 1. Wijeysundera DN, Wijeysundera HC, Yun L, et al. Risk of elective major noncardiac surgery after coronary stent insertion: a population-based study. Circulation. 2012;126:1355-62.
- Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology. 2011;114:1289-96.
- 3. Healy KO, Waksmonski CA, Altman RK, et al. Perioperative outcome and long-term mortality for heart failure patients undergoing intermediate- and high-risk noncardiac surgery: impact of left ventricular ejection fraction. Congest Heart Fail. 2010;16:45-9.
- 4. Ferket BS, Genders TS, Colkesen EB, et al. Systematic review of guidelines on imaging of asymptomatic coronary artery disease. J Am Coll Cardiol. 2011;57:1591-600.
- 5. Wijeysundera DN, Beattie WS, Austin PC, et al. Non-invasive cardiac stress testing before elective major non-cardiac surgery: population based cohort study. BMJ. 2010;340:b5526.
- 6. Bateman BT, Schumacher HC, Wang S, et al. Perioperative acute ischemic stroke in noncardiac and nonvascular surgery: incidence, risk factors, and outcomes. Anesthesiology. 2009;110:231-8.
- 7. Rogers SO, Jr., Kilaru RK, Hosokawa P, et al. Multivariable predictors of postoperative venous thromboembolic events after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg. 2007;204:1211-21.
- 8. Dasgupta M, Rolfson DB, Stolee P, et al. Frailty is associated with postoperative complications in older adults with medical problems. Arch Gerontol Geriatr. 2009;48:78-83.
- 9. Hammill BG, Curtis LH, Bennett-Guerrero E, et al. Impact of heart failure on patients undergoing major noncardiac surgery. Anesthesiology. 2008;108:559-67.
- 10. Hernandez AF, Whellan DJ, Stroud S, et al. Outcomes in heart failure patients after major noncardiac surgery. J Am Coll Cardiol. 2004;44:1446-53.
- 11. van DS, Bakal JA, McAlister FA, et al. Mortality and readmission of patients with heart failure, atrial fibrillation, or coronary artery disease undergoing noncardiac surgery: an analysis of 38 047 patients. Circulation. 2011;124:289-96.
- 12. Xu-Cai YO, Brotman DJ, Phillips CO, et al. Outcomes of patients with stable heart failure undergoing elective noncardiac surgery. Mayo Clin Proc. 2008;83:280-8.
- 13. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33:1750-7.
- 14. Kazmers A, Cerqueira MD, Zierler RE. Perioperative and late outcome in patients with left ventricular ejection fraction of 35% or less who require major vascular surgery. J Vasc Surg. 1988;8:307-15.
- 15. Kazmers A, Cerqueira MD, Zierler RE. The role of preoperative radionuclide left ventricular ejection fraction for risk assessment in carotid surgery. Arch Surg. 1988;123:416-9.
- Goldman L, Caldera DL, Nussbaum SR, et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med. 1977;297:845-50.
- 17. Detsky AS, Abrams HB, McLaughlin JR, et al. Predicting cardiac complications in patients undergoing non-cardiac surgery. J Gen Intern Med. 1986;1:211-9.
- Lee TH, Marcantonio ER, Mangione CM, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100:1043-9.
- 19. Agarwal S, Rajamanickam A, Bajaj NS, et al. Impact of aortic stenosis on postoperative outcomes after noncardiac surgeries. Circ Cardiovasc Qual Outcomes. 2013;6:193-200.
- 20. Calleja AM, Dommaraju S, Gaddam R, et al. Cardiac risk in patients aged >75 years with asymptomatic, severe aortic stenosis undergoing noncardiac surgery. Am J Cardiol. 2010;105:1159-63.
- 21. Leibowitz D, Rivkin G, Schiffman J, et al. Effect of severe aortic stenosis on the outcome in elderly patients undergoing repair of hip fracture. Gerontology. 2009;55:303-6.
- 22. Zahid M, Sonel AF, Saba S, et al. Perioperative risk of noncardiac surgery associated with aortic stenosis. Am J Cardiol. 2005;96:436-8.
- 23. Torsher LC, Shub C, Rettke SR, et al. Risk of patients with severe aortic stenosis undergoing noncardiac surgery. Am J Cardiol. 1998;81:448-52.
- 24. Lai H-C, Lai H-C, Lee W-L, et al. Impact of chronic advanced aortic regurgitation on the perioperative outcome of noncardiac surgery. Acta Anaesthesiol Scand. 2010;54:580-8.
- 25. Bajaj NS, Agarwal S, Rajamanickam A, et al. Impact of severe mitral regurgitation on postoperative outcomes after noncardiac surgery. Am J Med. 2013;126:529-35.
- 26. Lai H-C, Lai H-C, Wang K-Y, et al. Severe pulmonary hypertension complicates postoperative outcome of non-cardiac surgery. Br J Anaesth. 2007;99:184-90.
- 27. Biteker M, Duman D, Tekkesin AI. Predictive value of preoperative electrocardiography for perioperative cardiovascular outcomes in patients undergoing noncardiac, nonvascular surgery. Clin Cardiol. 2012;35:494-9.
- 28. Mahla E, Rotman B, Rehak P, et al. Perioperative ventricular dysrhythmias in patients with structural heart disease undergoing noncardiac surgery. Anesth Analg. 1998;86:16-21.
- 29. Mangano DT, Browner WS, Hollenberg M, et al. Long-term cardiac prognosis following noncardiac surgery. The Study of Perioperative Ischemia Research Group. JAMA. 1992;268:233-9.
- 30. O'Kelly B, Browner WS, Massie B, et al. Ventricular arrhythmias in patients undergoing noncardiac surgery. The Study of Perioperative Ischemia Research Group. JAMA. 1992;268:217-21.
- 31. Ramakrishna G, Sprung J, Ravi BS, et al. Impact of pulmonary hypertension on the outcomes of noncardiac surgery:
- predictors of perioperative morbidity and mortality. J Am Coll Cardiol. 2005;45:1691-9.
- 32. Minai OA, Venkateshiah SB, Arroliga AC. Surgical intervention in patients with moderate to severe pulmonary arterial hypertension. Conn Med. 2006;70:239-43.
- 33. Kaw R, Pasupuleti V, Deshpande A, et al. Pulmonary hypertension: an important predictor of outcomes in patients undergoing non-cardiac surgery. Respir Med. 2011;105:619-24.
- 34. Price LC, Montani D, Jaïs X, et al. Noncardiothoracic nonobstetric surgery in mild-to-moderate pulmonary hypertension. Eur Respir J. 2010;35:1294-302.
- 35. Meyer S, McLaughlin VV, Seyfarth H-J, et al. Outcomes of noncardiac, nonobstetric surgery in patients with PAH: an international prospective survey. Eur Respir J. 2013;41:1302-7.
- 36. McFalls EO, Ward HB, Moritz TE, et al. Coronary-artery revascularization before elective major vascular surgery. N Engl J Med. 2004;351:2795-804.
- 37. Davenport DL, O'Keeffe SD, Minion DJ, et al. Thirty-day NSQIP database outcomes of open versus endoluminal repair of ruptured abdominal aortic aneurysms. J Vasc Surg. 2010;51:305-9.e1.

- Jordan SW, Mioton LM, Smetona J, et al. Resident involvement and plastic surgery outcomes: an analysis of 10,356 patients from the American College of Surgeons National Surgical Quality Improvement Program database. Plast Reconstr Surg. 2013;131:763-73.
- 39. Leung JM, Dzankic S. Relative importance of preoperative health status versus intraoperative factors in predicting postoperative adverse outcomes in geriatric surgical patients. J Am Geriatr Soc. 2001;49:1080-5.
- 40. Reilly DF, McNeely MJ, Doerner D, et al. Self-reported exercise tolerance and the risk of serious perioperative complications. Arch Intern Med. 1999;159:2185-92.
- 41. Older P, Hall A, Hader R. Cardiopulmonary exercise testing as a screening test for perioperative management of major surgery in the elderly. Chest. 1999;116:355-62.
- 42. Wiklund RA, Stein HD, Rosenbaum SH. Activities of daily living and cardiovascular complications following elective, noncardiac surgery. Yale J Biol Med. 2001;74:75-87.
- 43. Crawford RS, Cambria RP, Abularrage CJ, et al. Preoperative functional status predicts perioperative outcomes after infrainguinal bypass surgery. J Vasc Surg. 2010;51:351-8.
- 44. Goswami S, Brady JE, Jordan DA, et al. Intraoperative cardiac arrests in adults undergoing noncardiac surgery: incidence, risk factors, and survival outcome. Anesthesiology. 2012;117:1018-26.
- 45. Tsiouris A, Horst HM, Paone G, et al. Preoperative risk stratification for thoracic surgery using the American College of Surgeons National Surgical Quality Improvement Program data set: functional status predicts morbidity and mortality. J Surg Res. 2012;177:1-6.
- 46. Carliner NH, Fisher ML, Plotnick GD, et al. The preoperative electrocardiogram as an indicator of risk in major noncardiac surgery. Can J Cardiol. 1986;2:134-7.
- 47. Gold BS, Young ML, Kinman JL, et al. The utility of preoperative electrocardiograms in the ambulatory surgical patient. Arch Intern Med. 1992;152:301-5.
- 48. Jeger RV, Probst C, Arsenic R, et al. Long-term prognostic value of the preoperative 12-lead electrocardiogram before major noncardiac surgery in coronary artery disease. Am Heart J. 2006;151:508-13.
- 49. Landesberg G, Einav S, Christopherson R, et al. Perioperative ischemia and cardiac complications in major vascular surgery: importance of the preoperative twelve-lead electrocardiogram. J Vasc Surg. 1997;26:570-8.
- 50. Liu LL, Dzankic S, Leung JM. Preoperative electrocardiogram abnormalities do not predict postoperative cardiac complications in geriatric surgical patients. J Am Geriatr Soc. 2002;50:1186-91.
- 51. Payne CJ, Payne AR, Gibson SC, et al. Is there still a role for preoperative 12-lead electrocardiography? World J Surg. 2011;35:2611-6.
- 52. Schein OD, Katz J, Bass EB, et al. The value of routine preoperative medical testing before cataract surgery. Study of Medical Testing for Cataract Surgery. N Engl J Med. 2000;342:168-75.
- 53. Seymour DG, Pringle R, MacLennan WJ. The role of the routine pre-operative electrocardiogram in the elderly surgical patient. Age Ageing. 1983;12:97-104.
- 54. Turnbull JM, Buck C. The value of preoperative screening investigations in otherwise healthy individuals. Arch Intern Med. 1987;147:1101-5.
- 55. van Klei WA, Bryson GL, Yang H, et al. The value of routine preoperative electrocardiography in predicting myocardial infarction after noncardiac surgery. Ann Surg. 2007;246:165-70.
- 56. Baron JF, Mundler O, Bertrand M, et al. Dipyridamole-thallium scintigraphy and gated radionuclide angiography to assess cardiac risk before abdominal aortic surgery. N Engl J Med. 1994;330:663-9.
- 57. Kontos MC, Brath LK, Akosah KO, et al. Cardiac complications in noncardiac surgery: relative value of resting two-
- dimensional echocardiography and dipyridamole thallium imaging. Am Heart J. 1996;132:559-66.
 58. Halm EA, Browner WS, Tubau JF, et al. Echocardiography for assessing cardiac risk in patients having noncardiac surgery.
- Study of Perioperative Ischemia Research Group. Ann Intern Med. 1996;125:433-41.59. Rohde LE, Polanczyk CA, Goldman L, et al. Usefulness of transthoracic echocardiography as a tool for risk stratification of
- patients undergoing major noncardiac surgery. Am J Cardiol. 2001;87:505-9.
 60. Cutler BS, Wheeler HB, Paraskos JA, et al. Applicability and interpretation of electrocardiographic stress testing in patients
- with peripheral vascular disease. Am J Surg. 1981;141:501-6.
 61. Gerson MC, Hurst JM, Hertzberg VS, et al. Cardiac prognosis in noncardiac geriatric surgery. Ann Intern Med. 1985;103:832-7.
- Arous EJ, Baum PL, Cutler BS. The ischemic exercise test in patients with peripheral vascular disease. Implications for management. Arch Surg. 1984;119:780-3.
- 63. Carliner NH, Fisher ML, Plotnick GD, et al. Routine preoperative exercise testing in patients undergoing major noncardiac surgery. Am J Cardiol. 1985;56:51-8.
- 64. Leppo J, Plaja J, Gionet M, et al. Noninvasive evaluation of cardiac risk before elective vascular surgery. J Am Coll Cardiol. 1987;9:269-76.
- 65. McPhail N, Calvin JE, Shariatmadar A, et al. The use of preoperative exercise testing to predict cardiac complications after arterial reconstruction. J Vasc Surg. 1988;7:60-8.
- 66. Sgura FA, Kopecky SL, Grill JP, et al. Supine exercise capacity identifies patients at low risk for perioperative cardiovascular events and predicts long-term survival. Am J Med. 2000;108:334-6.
- 67. Hartley RA, Pichel AC, Grant SW, et al. Preoperative cardiopulmonary exercise testing and risk of early mortality following abdominal aortic aneurysm repair. Br J Surg. 2012;99:1539-46.
- 68. Thompson AR, Peters N, Lovegrove RE, et al. Cardiopulmonary exercise testing provides a predictive tool for early and late outcomes in abdominal aortic aneurysm patients. Ann R Coll Surg Engl. 2011;93:474-81.
- 69. Prentis JM, Trenell MI, Jones DJ, et al. Submaximal exercise testing predicts perioperative hospitalization after aortic aneurysm repair. J Vasc Surg. 2012;56:1564-70.
- 70. Carlisle J, Swart M. Mid-term survival after abdominal aortic aneurysm surgery predicted by cardiopulmonary exercise testing. Br J Surg. 2007;94:966-9.
- 71. Older P, Smith R, Courtney P, et al. Preoperative evaluation of cardiac failure and ischemia in elderly patients by cardiopulmonary exercise testing. Chest. 1993;104:701-4.
- 72. Snowden CP, Prentis JM, Anderson HL, et al. Submaximal cardiopulmonary exercise testing predicts complications and hospital length of stay in patients undergoing major elective surgery. Ann Surg. 2010;251:535-41.
- 73. Snowden CP, Prentis J, Jacques B, et al. Cardiorespiratory fitness predicts mortality and hospital length of stay after major elective surgery in older people. Ann Surg. 2013;257:999-1004.
- 74. Wilson RJT, Davies S, Yates D, et al. Impaired functional capacity is associated with all-cause mortality after major elective intra-abdominal surgery. Br J Anaesth. 2010;105:297-303.
- 75. Junejo MA, Mason JM, Sheen AJ, et al. Cardiopulmonary exercise testing for preoperative risk assessment before hepatic resection. Br J Surg. 2012;99:1097-104.

- 76. Beattie WS, Abdelnaem E, Wijeysundera DN, et al. A meta-analytic comparison of preoperative stress echocardiography and nuclear scintigraphy imaging. Anesth Analg. 2006;102:8-16.
- 77. Eagle KA, Brundage BH, Chaitman BR, et al. Guidelines for perioperative cardiovascular evaluation for noncardiac surgery. Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Committee on Perioperative Cardiovascular Evaluation for Noncardiac Surgery. Circulation. 1996;93:1278-317.
- 78. Younis LT, Aguirre F, Byers S, et al. Perioperative and long-term prognostic value of intravenous dipyridamole thallium scintigraphy in patients with peripheral vascular disease. Am Heart J. 1990;119:1287-92.
- 79. Hendel RC, Whitfield SS, Villegas BJ, et al. Prediction of late cardiac events by dipyridamole thallium imaging in patients undergoing elective vascular surgery. Am J Cardiol. 1992;70:1243-9.
- 80. Lette J, Waters D, Cerino M, et al. Preoperative coronary artery disease risk stratification based on dipyridamole imaging and a simple three-step, three-segment model for patients undergoing noncardiac vascular surgery or major general surgery. Am J Cardiol. 1992;69:1553-8.
- 81. Brown KA, Rowen M. Extent of jeopardized viable myocardium determined by myocardial perfusion imaging best predicts perioperative cardiac events in patients undergoing noncardiac surgery. J Am Coll Cardiol. 1993;21:325-30.
- 82. Bry JD, Belkin M, O'Donnell TF, et al. An assessment of the positive predictive value and cost-effectiveness of dipyridamole myocardial scintigraphy in patients undergoing vascular surgery. J Vasc Surg. 1994;19:112-21.
- 83. Marshall ES, Raichlen JS, Forman S, et al. Adenosine radionuclide perfusion imaging in the preoperative evaluation of patients undergoing peripheral vascular surgery. Am J Cardiol. 1995;76:817-21.
- 84. Stratmann HG, Younis LT, Wittry MD, et al. Dipyridamole technetium-99m sestamibi myocardial tomography in patients evaluated for elective vascular surgery: prognostic value for perioperative and late cardiac events. Am Heart J. 1996;131:923-9.
- 85. Cohen MC, Siewers AE, Dickens JD, et al. Perioperative and long-term prognostic value of dipyridamole Tc-99m sestamibi myocardial tomography in patients evaluated for elective vascular surgery. J Nucl Cardiol. 2003;10:464-72.
- 86. Harafuji K, Chikamori T, Kawaguchi S, et al. Value of pharmacologic stress myocardial perfusion imaging for preoperative risk stratification for aortic surgery. Circ J. 2005;69:558-63.
- 87. Lane RT, Sawada SG, Segar DS, et al. Dobutamine stress echocardiography for assessment of cardiac risk before noncardiac surgery. Am J Cardiol. 1991;68:976-7.
- Lalka SG, Sawada SG, Dalsing MC, et al. Dobutamine stress echocardiography as a predictor of cardiac events associated with aortic surgery. J Vasc Surg. 1992;15:831-40.
- 89. Eichelberger JP, Schwarz KQ, Black ER, et al. Predictive value of dobutamine echocardiography just before noncardiac vascular surgery. Am J Cardiol. 1993;72:602-7.
- 90. Langan EM, Youkey JR, Franklin DP, et al. Dobutamine stress echocardiography for cardiac risk assessment before aortic surgery. J Vasc Surg. 1993;18:905-11.
- 91. Davila-Roman VG, Waggoner AD, Sicard GA, et al. Dobutamine stress echocardiography predicts surgical outcome in patients with an aortic aneurysm and peripheral vascular disease. J Am Coll Cardiol. 1993;21:957-63.
- 92. Shafritz R, Ciocca RG, Gosin JS, et al. The utility of dobutamine echocardiography in preoperative evaluation for elective aortic surgery. Am J Surg. 1997;174:121-5.
- 93. Bossone E, Martinez FJ, Whyte RI, et al. Dobutamine stress echocardiography for the preoperative evaluation of patients undergoing lung volume reduction surgery. J Thorac Cardiovasc Surg. 1999;118:542-6.
- 94. Ballal RS, Kapadia S, Secknus MA, et al. Prognosis of patients with vascular disease after clinical evaluation and dobutamine stress echocardiography. Am Heart J. 1999;137:469-75.
- 95. Das MK, Pellikka PA, Mahoney DW, et al. Assessment of cardiac risk before nonvascular surgery: dobutamine stress echocardiography in 530 patients. J Am Coll Cardiol. 2000;35:1647-53.
- 96. Morgan PB, Panomitros GE, Nelson AC, et al. Low utility of dobutamine stress echocardiograms in the preoperative evaluation of patients scheduled for noncardiac surgery. Anesth Analg. 2002;95:512-6.
- 97. Torres MR, Short L, Baglin T, et al. Usefulness of clinical risk markers and ischemic threshold to stratify risk in patients undergoing major noncardiac surgery. Am J Cardiol. 2002;90:238-42.
- Labib SB, Goldstein M, Kinnunen PM, et al. Cardiac events in patients with negative maximal versus negative submaximal dobutamine echocardiograms undergoing noncardiac surgery: importance of resting wall motion abnormalities. J Am Coll Cardiol. 2004;44:82-7.
- 99. Raux M, Godet G, Isnard R, et al. Low negative predictive value of dobutamine stress echocardiography before abdominal aortic surgery. Br J Anaesth. 2006;97:770-6.
- 100. Umphrey LG, Hurst RT, Eleid MF, et al. Preoperative dobutamine stress echocardiographic findings and subsequent short-term adverse cardiac events after orthotopic liver transplantation. Liver Transpl. 2008;14:886-92.
- 101. Lerakis S, Kalogeropoulos AP, El-Chami MF, et al. Transthoracic dobutamine stress echocardiography in patients undergoing bariatric surgery. Obes Surg. 2007;17:1475-81.
- 102. Monaco M, Stassano P, Di TL, et al. Systematic strategy of prophylactic coronary angiography improves long-term outcome after major vascular surgery in medium- to high-risk patients: a prospective, randomized study. J Am Coll Cardiol. 2009;54:989-96.
- 103. Kaluza GL, Joseph J, Lee JR, et al. Catastrophic outcomes of noncardiac surgery soon after coronary stenting. J Am Coll Cardiol. 2000;35:1288-94.
- 104. Wilson SH, Fasseas P, Orford JL, et al. Clinical outcome of patients undergoing non-cardiac surgery in the two months following coronary stenting. J Am Coll Cardiol. 2003;42:234-40.
- 105. Sharma AK, Ajani AE, Hamwi SM, et al. Major noncardiac surgery following coronary stenting: when is it safe to operate? Catheter Cardiovasc Interv. 2004;63:141-5.
- 106. Reddy PR, Vaitkus PT. Risks of noncardiac surgery after coronary stenting. Am J Cardiol. 2005;95:755-7.
- 107. Brichon PY, Boitet P, Dujon A, et al. Perioperative in-stent thrombosis after lung resection performed within 3 months of coronary stenting. Eur J Cardiothorac Surg. 2006;30:793-6.
- 108. Nuttall GA, Brown MJ, Stombaugh JW, et al. Time and cardiac risk of surgery after bare-metal stent percutaneous coronary intervention. Anesthesiology. 2008;109:588-95.
- Compton PA, Zankar AA, Adesanya AO, et al. Risk of noncardiac surgery after coronary drug-eluting stent implantation. Am J Cardiol. 2006;98:1212-3.
- 110. Brotman DJ, Bakhru M, Saber W, et al. Discontinuation of antiplatelet therapy prior to low-risk noncardiac surgery in patients with drug-eluting stents: a retrospective cohort study. J Hosp Med. 2007;2:378-84.
- 111. Conroy M, Bolsin SN, Black SA, et al. Perioperative complications in patients with drug-eluting stents: a three-year audit at Geelong Hospital. Anaesth Intensive Care. 2007;35:939-44.
- 112. Rhee SJ, Yun KH, Lee SR, et al. Drug-eluting stent thrombosis during perioperative period. Int Heart J. 2008;49:135-42.
- 113. Godet G, Le MY, Lesache F, et al. Drug-eluting stent thrombosis in patients undergoing non-cardiac surgery: is it always a problem? Br J Anaesth. 2008;100:472-7.

- 114. Rabbitts JA, Nuttall GA, Brown MJ, et al. Cardiac risk of noncardiac surgery after percutaneous coronary intervention with drug-eluting stents. Anesthesiology. 2008;109:596-604.
- 115. Chia KK, Park JJ, Postle J, et al. Frequency of late drug-eluting stent thrombosis with non-cardiac surgery. Am J Cardiol. 2010;106:1-3.
- 116. Anwaruddin S, Askari AT, Saudye H, et al. Characterization of post-operative risk associated with prior drug-eluting stent use. JACC Cardiovasc Interv. 2009;2:542-9.
- 117. Assali A, Vaknin-Assa H, Lev E, et al. The risk of cardiac complications following noncardiac surgery in patients with drug eluting stents implanted at least six months before surgery. Catheter Cardiovasc Interv. 2009;74:837-43.
- 118. Berger PB, Kleiman NS, Pencina MJ, et al. Frequency of major noncardiac surgery and subsequent adverse events in the year after drug-eluting stent placement results from the EVENT (Evaluation of Drug-Eluting Stents and Ischemic Events) Registry. JACC Cardiovasc Interv. 2010;3:920-7.
- 119. Gandhi NK, Abdel-Karim ARR, Banerjee S, et al. Frequency and risk of noncardiac surgery after drug-eluting stent implantation. Catheter Cardiovasc Interv. 2011;77:972-6.
- 120. Brilakis ES, Cohen DJ, Kleiman NS, et al. Incidence and clinical outcome of minor surgery in the year after drug-eluting stent implantation: results from the Evaluation of Drug-Eluting Stents and Ischemic Events Registry. Am Heart J. 2011;161:360-6.
- 121. Kim HL, Park KW, Kwak JJ, et al. Stent-related cardiac events after non-cardiac surgery: drug-eluting stent vs. bare metal stent. Int J Cardiol. 2008;123:353-4.
- 122. Schouten O, van Domburg RT, Bax JJ, et al. Noncardiac surgery after coronary stenting: early surgery and interruption of antiplatelet therapy are associated with an increase in major adverse cardiac events. J Am Coll Cardiol. 2007;49:122-4.
- van Kuijk J-P, Flu W-J, Schouten O, et al. Timing of noncardiac surgery after coronary artery stenting with bare metal or drug-eluting stents. Am J Cardiol. 2009;104:1229-34.
- 124. Cruden NLM, Harding SA, Flapan AD, et al. Previous coronary stent implantation and cardiac events in patients undergoing noncardiac surgery. Circ Cardiovasc Interv. 2010;3:236-42.
- 125. Albaladejo P, Marret E, Samama CM, et al. Non-cardiac surgery in patients with coronary stents: the RECO study. Heart. 2011;97:1566-72.
- 126. Brancati MF, Giammarinaro M, Burzotta F, et al. Outcome of non-cardiac surgery after stent implantation in the DES era: results of the Surgery After Stent (SAS) registry. J Invasive Cardiol. 2011;23:44-9.
- Tokushige A, Shiomi H, Morimoto T, et al. Incidence and outcome of surgical procedures after coronary bare-metal and drug-eluting stent implantation: a report from the CREDO-Kyoto PCI/CABG registry cohort-2. Circ Cardiovasc Interv. 2012;5:237-46.
- 128. Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative Beta Blockade in Noncardiac Surgery: A Systematic Review for the 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. In Press. Journal of the American College of Cardiology. 2014;
- 129. Mangano DT, Layug EL, Wallace A, et al. Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Research Group. N Engl J Med. 1996;335:1713-20.
- 130. Jakobsen CJ, Bille S, Ahlburg P, et al. Perioperative metoprolol reduces the frequency of atrial fibrillation after thoracotomy for lung resection. J Cardiothorac Vasc Anesth. 1997;11:746-51.
- 131. Bayliff CD, Massel DR, Inculet RI, et al. Propranolol for the prevention of postoperative arrhythmias in general thoracic surgery. Ann Thorac Surg. 1999;67:182-6.
- 132. Poldermans D, Boersma E, Bax JJ, et al. The effect of bisoprolol on perioperative mortality and myocardial infarction in high-risk patients undergoing vascular surgery. Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography Study Group. N Engl J Med. 1999;341:1789-94.
- 133. Raby KE, Brull SJ, Timimi F, et al. The effect of heart rate control on myocardial ischemia among high-risk patients after vascular surgery. Anesth Analg. 1999;88:477-82.
- 134. Zaugg M, Tagliente T, Lucchinetti E, et al. Beneficial effects from beta-adrenergic blockade in elderly patients undergoing noncardiac surgery. Anesthesiology. 1999;91:1674-86.
- 135. Urban MK, Markowitz SM, Gordon MA, et al. Postoperative prophylactic administration of beta-adrenergic blockers in patients at risk for myocardial ischemia. Anesth Analg. 2000;90:1257-61.
- 136. Brady AR, Gibbs JSR, Greenhalgh RM, et al. Perioperative beta-blockade (POBBLE) for patients undergoing infrarenal vascular surgery: results of a randomized double-blind controlled trial. J Vasc Surg. 2005;41:602-9.
- 137. Juul AB, Wetterslev J, Gluud C, et al. Effect of perioperative beta-blockade in patients with diabetes undergoing major noncardiac surgery: randomised placebo controlled, blinded multicentre trial. BMJ. 2006;332:1482.
- 138. Lai R-C, Xu M-X, Huang WQ, et al. [Beneficial effects of metoprolol on perioperative cardiac function of elderly esophageal cancer patients]. Ai Zheng. 2006;25:609-13.
- 139. Yang H, Raymer K, Butler R, et al. The effects of perioperative beta-blockade: results of the Metoprolol after Vascular Surgery (MaVS) study, a randomized controlled trial. Am Heart J. 2006;152:983-90.
- 140. Neary WD, McCrirrick A, Foy C, et al. Lessons learned from a randomised controlled study of perioperative beta blockade in high risk patients undergoing emergency surgery. Surgeon. 2006;4:139-43.
- 141. Zaugg M, Bestmann L, Wacker J, et al. Adrenergic receptor genotype but not perioperative bisoprolol therapy may determine cardiovascular outcome in at-risk patients undergoing surgery with spinal block: the Swiss Beta Blocker in Spinal Anesthesia (BBSA) study: a double-blinded, placebo-controlled, multicenter trial with 1-year follow-up. Anesthesiology. 2007;107:33-44.
- 142. Devereaux PJ, Yang H, Yusuf S, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomized controlled trial. Lancet. 2008;371:1839-47.
- 143. Yang X, Wu X, Wang S, et al. [Effects of metoprolol on perioperative cardiovascular events in patients with risk or at high risk for coronary artery disease undergoing non-cardiac surgery]. Zhonghua Yi Xue Za Zhi. 2008;88:1476-80.
- 144. Dunkelgrun M, Boersma E, Schouten O, et al. Bisoprolol and fluvastatin for the reduction of perioperative cardiac mortality and myocardial infarction in intermediate-risk patients undergoing noncardiovascular surgery: a randomized controlled trial (DECREASE-IV). Ann Surg. 2009;249:921-6.
- 145. Matyal R, Mahmood F, Panzica P, et al. Sex-related differences in outcome after high-risk vascular surgery after the administration of beta-adrenergic-blocking drugs. J Cardiothorac Vasc Anesth. 2008;22:354-60.
- 146. Sanders RD, Nicholson A, Lewis SR, et al. Perioperative statin therapy for improving outcomes during and after noncardiac vascular surgery. Cochrane Database Syst Rev. 2013;7:CD009971.
- 147. Raju MG, Pachika A, Punnam SR, et al. Statin therapy in the reduction of cardiovascular events in patients undergoing intermediate-risk noncardiac, nonvascular surgery. Clin Cardiol. 2013;36:456-61.
- 148. Lau WC, Froehlich JB, Jewell ES, et al. Impact of adding aspirin to beta-blocker and statin in high-risk patients undergoing major vascular surgery. Ann Vasc Surg. 2013;27:537-45.

- 149. Durazzo AES, Machado FS, Ikeoka DT, et al. Reduction in cardiovascular events after vascular surgery with atorvastatin: a randomized trial. J Vasc Surg. 2004;39:967-75.
- 150. Oliver MF, Goldman L, Julian DG, et al. Effect of mivazerol on perioperative cardiac complications during non-cardiac surgery in patients with coronary heart disease: the European Mivazerol Trial (EMIT). Anesthesiology. 1999;91:951-61.
- 151. Stuhmeier KD, Mainzer B, Cierpka J, et al. Small, oral dose of clonidine reduces the incidence of intraoperative myocardial ischemia in patients having vascular surgery. Anesthesiology. 1996;85:706-12.
- 152. Wallace AW, Galindez D, Salahieh A, et al. Effect of clonidine on cardiovascular morbidity and mortality after noncardiac surgery. Anesthesiology. 2004;101:284-93.
- 153. Wijeysundera DN, Beattie WS. Calcium channel blockers for reducing cardiac morbidity after noncardiac surgery: a metaanalysis. Anesth Analg. 2003;97:634-41.
- 154. Kashimoto S, Seki M, Ishiguro T, et al. Nicorandil decreases cardiac events during and after noncardiac surgery. J Clin Anesth. 2007;19:44-8.
- 155. Turan A, You J, Shiba A, et al. Angiotensin converting enzyme inhibitors are not associated with respiratory complications or mortality after noncardiac surgery. Anesth Analg. 2012;114:552-60.
- 156. Hawn MT, Graham LA, Richman JS, et al. Risk of major adverse cardiac events following noncardiac surgery in patients with coronary stents. JAMA. 2013;310:1462-72.
- 157. Polanczyk CA, Goldman L, Marcantonio ER, et al. Supraventricular arrhythmia in patients having noncardiac surgery: clinical correlates and effect on length of stay. Ann Intern Med. 1998;129:279-85.
- 158. Amar D, Zhang H, Roistacher N. The incidence and outcome of ventricular arrhythmias after noncardiac thoracic surgery. Anesth Analg. 2002;95:537-43, table.
- 159. Roselli EE, Murthy SC, Rice TW, et al. Atrial fibrillation complicating lung cancer resection. J Thorac Cardiovasc Surg. 2005;130:438-44.
- 160. Amar D, Zhang H, Leung DHY, et al. Older age is the strongest predictor of postoperative atrial fibrillation. Anesthesiology. 2002;96:352-6.
- 161. Amar D, Zhang H, Heerdt PM, et al. Statin use is associated with a reduction in atrial fibrillation after noncardiac thoracic surgery independent of C-reactive protein. Chest. 2005;128:3421-7.
- 162. Amar D, Zhang H, Shi W, et al. Brain natriuretic peptide and risk of atrial fibrillation after thoracic surgery. J Thorac Cardiovasc Surg. 2012;144:1249-53.
- 163. Balser JR, Martinez EA, Winters BD, et al. Beta-adrenergic blockade accelerates conversion of postoperative supraventricular tachyarrhythmias. Anesthesiology. 1998;89:1052-9.
- 164. Bhave PD, Goldman LE, Vittinghoff E, et al. Incidence, predictors, and outcomes associated with postoperative atrial fibrillation after major noncardiac surgery. Am Heart J. 2012;164:918-24.
- 165. Bhave PD, Goldman LE, Vittinghoff E, et al. Statin use and postoperative atrial fibrillation after major noncardiac surgery. Heart Rhythm. 2012;9:163-9.
- 166. Borgeat A, Petropoulos P, Cavin R, et al. Prevention of arrhythmias after noncardiac thoracic operations: flecainide versus digoxin. Ann Thorac Surg. 1991;51:964-7.
- 167. Brathwaite D, Weissman C. The new onset of atrial arrhythmias following major noncardiothoracic surgery is associated with increased mortality. Chest. 1998;114:462-8.
- 168. Cardinale D, Martinoni A, Cipolla CM, et al. Atrial fibrillation after operation for lung cancer: clinical and prognostic significance. Ann Thorac Surg. 1999;68:1827-31.
- 169. Christians KK, Wu B, Quebbeman EJ, et al. Postoperative atrial fibrillation in noncardiothoracic surgical patients. Am J Surg. 2001;182:713-5.
- 170. Ojima T, Iwahashi M, Nakamori M, et al. Atrial fibrillation after esophageal cancer surgery: an analysis of 207 consecutive patients. Surg Today. 2013.
- 171. Onaitis M, D'Amico T, Zhao Y, et al. Risk factors for atrial fibrillation after lung cancer surgery: analysis of the Society of Thoracic Surgeons general thoracic surgery database. Ann Thorac Surg. 2010;90:368-74.
- 172. Riber LP, Christensen TD, Jensen HK, et al. Amiodarone significantly decreases atrial fibrillation in patients undergoing surgery for lung cancer. Ann Thorac Surg. 2012;94:339-44.
- 173. Tisdale JE, Wroblewski HA, Wall DS, et al. A randomized trial evaluating amiodarone for prevention of atrial fibrillation after pulmonary resection. Ann Thorac Surg. 2009;88:886-93.
- 174. Tisdale JE, Wroblewski HA, Wall DS, et al. A randomized, controlled study of amiodarone for prevention of atrial fibrillation after transthoracic esophagectomy. J Thorac Cardiovasc Surg. 2010;140:45-51.
- 175. Vaporciyan AA, Correa AM, Rice DC, et al. Risk factors associated with atrial fibrillation after noncardiac thoracic surgery: analysis of 2588 patients. J Thorac Cardiovasc Surg. 2004;127:779-86.
- 176. Cheng A, Nazarian S, Spragg DD, et al. Effects of surgical and endoscopic electrocautery on modern-day permanent pacemaker and implantable cardioverter-defibrillator systems. Pacing Clin Electrophysiol. 2008;31:344-50.
- Fiek M, Dorwarth U, Durchlaub I, et al. Application of radiofrequency energy in surgical and interventional procedures: are there interactions with ICDs? Pacing Clin Electrophysiol. 2004;27:293-8.
- Hauser RG, Kallinen L. Deaths associated with implantable cardioverter defibrillator failure and deactivation reported in the United States Food and Drug Administration Manufacturer and User Facility Device Experience Database. Heart Rhythm. 2004;1:399-405.
- 179. Mahlow WJ, Craft RM, Misulia NL, et al. A perioperative management algorithm for cardiac rhythm management devices: the PACED-OP protocol. Pacing Clin Electrophysiol. 2013;36:238-48.
- 180. Matzke TJ, Christenson LJ, Christenson SD, et al. Pacemakers and implantable cardiac defibrillators in dermatologic surgery. Dermatol Surg. 2006;32:1155-62.
- 181. Pili-Floury S, Farah E, Samain E, et al. Perioperative outcome of pacemaker patients undergoing non-cardiac surgery. Eur J Anaesthesiol. 2008;25:514-6.
- Barbosa FT, Jucá MJ, astro AA, et al. Neuraxial anaesthesia for lower-limb revascularization. Cochrane Database Syst Rev. 2013;7:CD007083.
- 183. Park WY, Thompson JS, Lee KK. Effect of epidural anesthesia and analgesia on perioperative outcome: a randomized, controlled Veterans Affairs cooperative study. Ann Surg. 2001;234:560-9.
- 184. Norris EJ, Beattie C, Perler BA, et al. Double-masked randomized trial comparing alternate combinations of intraoperative anesthesia and postoperative analgesia in abdominal aortic surgery. Anesthesiology. 2001;95:1054-67.
- 185. Guarracino F, Landoni G, Tritapepe L, et al. Myocardial damage prevented by volatile anesthetics: a multicenter randomized controlled study. J Cardiothorac Vasc Anesth. 2006;20:477-83.
- 186. Zangrillo A, Testa V, Aldrovandi V, et al. Volatile agents for cardiac protection in noncardiac surgery: a randomized controlled study. J Cardiothorac Vasc Anesth. 2011;25:902-7.
- 187. Landoni G, Fochi O, Bignami E, et al. Cardiac protection by volatile anesthetics in non-cardiac surgery? A meta-analysis of randomized controlled studies on clinically relevant endpoints. HSR Proc Intensive Care Cardiovasc Anesth. 2009;1:34-43.

- 188. Conzen PF, Fischer S, Detter C, et al. Sevoflurane provides greater protection of the myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology. 2003;99:826-33.
- 189. Landoni G, Biondi-Zoccai GG, Zangrillo A, et al. Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth. 2007;21:502-11.
- 190. Bignami E, Greco T, Barile L, et al. The effect of isoflurane on survival and myocardial infarction: a meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth. 2013;27:50-8.
- 191. Nishimori M, Low JH, Zheng H, et al. Epidural pain relief versus systemic opioid-based pain relief for abdominal aortic surgery. Cochrane Database Syst Rev. 2012;7:CD005059.
- 192. Wu CL, Anderson GF, Herbert R, et al. Effect of postoperative epidural analgesia on morbidity and mortality after total hip replacement surgery in medicare patients. Reg Anesth Pain Med. 2003;28:271-8.
- 193. Matot I, Oppenheim-Eden A, Ratrot R, et al. Preoperative cardiac events in elderly patients with hip fracture randomized to epidural or conventional analgesia. Anesthesiology. 2003;98:156-63.
- 194. Dodds TM, Stone JG, Coromilas J, et al. Prophylactic nitroglycerin infusion during noncardiac surgery does not reduce perioperative ischemia. Anesth Analg. 1993;76:705-13.
- 195. Fusciardi J, Godet G, Bernard JM, et al. Roles of fentanyl and nitroglycerin in prevention of myocardial ischemia associated with laryngoscopy and tracheal intubation in patients undergoing operations of short duration. Anesth Analg. 1986;65:617-24.
- 196. Thomson IR, Mutch WA, Culligan JD. Failure of intravenous nitroglycerin to prevent intraoperative myocardial ischemia during fentanyl-pancuronium anesthesia. Anesthesiology. 1984;61:385-93.
- 197. Sumer BD, Myers LL, Leach J, et al. Correlation between intraoperative hypothermia and perioperative morbidity in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg. 2009;135:682-6.
- 198. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334:1209-15.
- 199. Frank SM, Fleisher LA, Breslow MJ, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA. 1997;277:1127-34.
- 200. Nguyen HP, Zaroff JG, Bayman EO, et al. Perioperative hypothermia (33 degrees C) does not increase the occurrence of cardiovascular events in patients undergoing cerebral aneurysm surgery: findings from the Intraoperative Hypothermia for Aneurysm Surgery Trial. Anesthesiology. 2010;113:327-42.
- 201. Sandham JD, Hull RD, Brant RF, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5-14.
- 202. Valentine RJ, Duke ML, Inman MH, et al. Effectiveness of pulmonary artery catheters in aortic surgery: a randomized trial. J Vasc Surg. 1998;27:203-11.
- 203. Bender JS, Smith-Meek MA, Jones CE. Routine pulmonary artery catheterization does not reduce morbidity and mortality of elective vascular surgery: results of a prospective, randomized trial. Ann Surg. 1997;226:229-36.
- Garcia S, Marston N, Sandoval Y, et al. Prognostic value of 12-lead electrocardiogram and peak troponin I level after vascular surgery. J Vasc Surg. 2013;57:166-72.
- 205. van Waes JAR, Nathoe HM, de Graaff JC, et al. Myocardial injury after noncardiac surgery and its association with short-term mortality. Circulation. 2013;127:2264-71.
- 206. Shroff GR, Akkina SK, Miedema MD, et al. Troponin I levels and postoperative myocardial infarction following renal transplantation. Am J Nephrol. 2012;35:175-80.
- 207. Devereaux PJ, Chan MT, Alonso-Coello P, et al. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2012;307:2295-304.
- 208. Beattie WS, Karkouti K, Tait G, et al. Use of clinically based troponin underestimates the cardiac injury in non-cardiac surgery: a single-centre cohort study in 51,701 consecutive patients. Can J Anaesth. 2012;59:1013-22.
- 209. Redfern G, Rodseth RN, Biccard BM. Outcomes in vascular surgical patients with isolated postoperative troponin leak: a meta-analysis. Anaesthesia. 2011;66:604-10.
- 210. Nagele P, Rao LK, Penta M, et al. Postoperative myocardial injury after major head and neck cancer surgery. Head Neck. 2011;33:1085-91.
- 211. Levy M, Heels-Ansdell D, Hiralal R, et al. Prognostic value of troponin and creatine kinase muscle and brain isoenzyme measurement after noncardiac surgery: a systematic review and meta-analysis. Anesthesiology. 2011;114:796-806.
- 212. Devereaux PJ, Xavier D, Pogue J, et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann Intern Med. 2011;154:523-8.
- 213. McFalls EO, Ward HB, Moritz TE, et al. Predictors and outcomes of a perioperative myocardial infarction following elective vascular surgery in patients with documented coronary artery disease: results of the CARP trial. Eur Heart J. 2008;29:394-401.